• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What is the rate equation of the reaction between sodium thiosulphate and hydrochloric acid?

Extracts from this document...

Introduction

What is the rate equation of the reaction between sodium thiosulphate and hydrochloric acid? Overview Sodium thiosulphate and hydrochloric acid react according to the stoichiometric equation: Na2S2O3 (aq) + 2HCl (aq) 2NaCl (aq) + H2O (l) + SO2 (aq) + S(s) The balanced equation, however, does not tell us how the reactants become products. A rate law or rate equation, however, can. The purpose of this experiment is to determine the rate equation for the reaction between sodium thiosulphate and hydrochloric acid by determining the order of reaction with respect to sodium thiosulphate and hydrochloric acid. The order of reaction for each reactant is, in this case, determined by varying the concentrations of each reactant in turn while keeping the others constant. Data Collection and Processing] Raw Data Table Trial One Volume of Na2S2O3 /cm3 Volume of water /cm3 Volume of HCl /cm3 Time /s 50 0 10 49.7 40 10 10 64.6 30 20 10 95.0 15 35 10 222.2 5 45 10 1165.6 We made a brand new batch of sodium thiosulphate for the second trial. ...read more.

Middle

- Data Processing Overview- The first thing I will do is determine the concentration of sodium thiosulphate and hydrochloric acid at each corresponding volume. Then I will determine the average time taken for an X drawn on a piece of paper and placed under the Erlenmeyer flask to become obscured. Next I will determine the rate of each reactant at each given concentration for either reactant. Finally I will plot separate graphs of 1/time against the concentration of the reactant under consideration. Sample Calculation- Concentration of sodium thiosulphate in solution containing 50 cm3 of sodium thiosulphate: number of moles of Na2S2O3 used = C * V/1000 = 0.1 mol dm-3 * (50/1000 dm3) = 0.005 mol concentration of Na2S2O3 (mol dm-3) = n / V = 0.005 mol / 0.05 dm3 = 0.1 mol dm-3 Volume of Na2S2O3 /cm3 Concentration of Na2S2O3 /mol dm-3 50 0.1 40 0.08 30 0.06 15 0.03 5 0.01 The molarity of the hydrochloric acid is 1 mol. ...read more.

Conclusion

- Rate expression given by rate = k[Na2S2O3][HCl]2. Limitations of Experimental Design Suggestions for Improvement We made a new batch of sodium thiosulphate for the second trial of altering the concentration of sodium thiosulphate in all volumes except for that of 15cm3 Estimate how much sodium thiosulphate you will need beforehand so that you're sure to have enough of the batch of sodium thiosulphate We used results from both other groups to get our two other trials for when we altered the [HCl] so whatever errors they made are also ours Make sure to allocate time better so that we can conduct all trials We varied the concentration of sodium thiosulphate one day and the concentration of HCl another. It's most likely the room temperature changed between those two days. Make sure to conduct both parts of the experiment on the same day, in the same room. We used a brand new bottle HCl acid for when we altered the concentration of HCl. Use the same bottle of HCl for both alterations of concentrations of each reactant. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. A comparison of various proprieary antacids

    However it was hard to know the exact point whereby one could define the solution as being brown. On the other hand Zolicid gel which formed a thick cream solution also may have experienced this problem , as it was hard to know when exactly the solution had become pinkish white.

  2. Acids/Bases Design Lab. How does a change in the pH value of a solution ...

    (The solution was decanted into a waste beaker) The remaining zinc was then placed (with the use of tongs) in another clean, and dry 50cm3 beaker that was already massed, labeled 'Beaker CRT1', in which it was washed with distilled water from distilled water bottle pumps.

  1. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    I am going to use 100% luminol solution throughout this investigation; and the temperature will be room temperature, although it is varying everyday, it is still assumed constant. Since more H2O2 molecules are in 0.3M, more luminol molecules will be oxidized per second; for 0.03M H2O2, the concentration of H2O2

  2. Aim. To find the identity of X(OH)2 (a group II metal hydroxide) by determining ...

    Shows that there is a greater difference. Showing that it cannot be X(OH)2 solution. This is also shown for Mg(OH)2 as the difference between the calculated solubility and the literature value is 0.113 g/100 cm3, showing that it still has a greater difference than Calcium hydroxide does.

  1. The rate of reaction between sodium thiosulfate and hydrochloric acid

    Safety is therefore needed to be highly maintained. * Goggles and lab coat are worn throughout the experiment. * Procedures: 1. Close the tap and run some distilled water into the top of the burette, then swish the burette up and down to let the water clean all the inside of the burette.

  2. Chemistry extended essay - investigate the effect of 2-bromo-2-methyl propane concentration and temperature of ...

    2- Prepare 100 ml of 0.1 M NaOH solutions (in water) and put it in an Erlenmeyer flask and label it #2. 3- Using a burette take 30 ml of the solution in Erlenmeyer flask #1and put it in an Erlenmeyer flask and label it #3.

  1. Rate of Reaction sodium thiosulphate

    (note: the solute particles in solutions have the smallest particle size possible. and so solutions react fastest) Collisions occur at the surface of particles. The larger the particle size the smaller the surface area and the fewer collisions can occur.

  2. Determining the of the Effect of the Concentration of Na2S2O3 on the Rate of ...

    Observations: 1. We stirred all solutions. 2. There is a small delay between when we started the stop watch and poured the HCl, as it is impossible to perfectly coordinate this. 3. Bad smell released. 4. The stirring speed was not the same for each reaction, though it was attempted to be replicated equally for each reaction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work