• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What is the rate equation of the reaction between sodium thiosulphate and hydrochloric acid?

Extracts from this document...

Introduction

What is the rate equation of the reaction between sodium thiosulphate and hydrochloric acid? Overview Sodium thiosulphate and hydrochloric acid react according to the stoichiometric equation: Na2S2O3 (aq) + 2HCl (aq) � 2NaCl (aq) + H2O (l) + SO2 (aq) + S(s) The balanced equation, however, does not tell us how the reactants become products. A rate law or rate equation, however, can. The purpose of this experiment is to determine the rate equation for the reaction between sodium thiosulphate and hydrochloric acid by determining the order of reaction with respect to sodium thiosulphate and hydrochloric acid. The order of reaction for each reactant is, in this case, determined by varying the concentrations of each reactant in turn while keeping the others constant. Data Collection and Processing] Raw Data Table Trial One Volume of Na2S2O3 /cm3 Volume of water /cm3 Volume of HCl /cm3 Time /s 50 0 10 49.7 40 10 10 64.6 30 20 10 95.0 15 35 10 222.2 5 45 10 1165.6 We made a brand new batch of sodium thiosulphate for the second trial. ...read more.

Middle

- Data Processing Overview- The first thing I will do is determine the concentration of sodium thiosulphate and hydrochloric acid at each corresponding volume. Then I will determine the average time taken for an X drawn on a piece of paper and placed under the Erlenmeyer flask to become obscured. Next I will determine the rate of each reactant at each given concentration for either reactant. Finally I will plot separate graphs of 1/time against the concentration of the reactant under consideration. Sample Calculation- Concentration of sodium thiosulphate in solution containing 50 cm3 of sodium thiosulphate: number of moles of Na2S2O3 used = C * V/1000 = 0.1 mol dm-3 * (50/1000 dm3) = 0.005 mol concentration of Na2S2O3 (mol dm-3) = n / V = 0.005 mol / 0.05 dm3 = 0.1 mol dm-3 Volume of Na2S2O3 /cm3 Concentration of Na2S2O3 /mol dm-3 50 0.1 40 0.08 30 0.06 15 0.03 5 0.01 The molarity of the hydrochloric acid is 1 mol. ...read more.

Conclusion

- Rate expression given by rate = k[Na2S2O3][HCl]2. Limitations of Experimental Design Suggestions for Improvement We made a new batch of sodium thiosulphate for the second trial of altering the concentration of sodium thiosulphate in all volumes except for that of 15cm3 Estimate how much sodium thiosulphate you will need beforehand so that you're sure to have enough of the batch of sodium thiosulphate We used results from both other groups to get our two other trials for when we altered the [HCl] so whatever errors they made are also ours Make sure to allocate time better so that we can conduct all trials We varied the concentration of sodium thiosulphate one day and the concentration of HCl another. It's most likely the room temperature changed between those two days. Make sure to conduct both parts of the experiment on the same day, in the same room. We used a brand new bottle HCl acid for when we altered the concentration of HCl. Use the same bottle of HCl for both alterations of concentrations of each reactant. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    The 2 dependent variables, which will stay constant to obtain the fair test, are temperature and the concentration of H2O2. I am going to use 0.15M of H2O2 throughout this investigation; and same as the Investigation A, I will assume the room temperature is constant that will not affect the result too much.

  2. Rate of Reaction sodium thiosulphate

    (note: the solute particles in solutions have the smallest particle size possible. and so solutions react fastest) Collisions occur at the surface of particles. The larger the particle size the smaller the surface area and the fewer collisions can occur.

  1. Acids/Bases Design Lab. How does a change in the pH value of a solution ...

    Another clean, dry, and empty 50cm3 beaker, labeled 'Beaker CRT1' was massed out on the electronic milligram balance. Its mass was recorded to the nearest 0.001g. 12. After exactly 1 minute has elapsed, the 500cm3 beaker labeled CT1 was decanted of its hydrochloric acid solution, making sure that the zinc metal strip remained.

  2. Aim: To study and investigate the effect of temperature on the rate of ...

    Secondly the more frequent collisions having higher energy, the probability of effective collisions also increase thus increasing the reaction rate. But it must be noted that the graph of reaction rate against temperature will not be a linear graph alike the one drawn against concentration because although temperature is proportional

  1. A comparison of various proprieary antacids

    are found by subtracting the understated remaining moles of hydrochloric acid from the initial moles, the moles of hydrochloric acid reacted with the antacid would also be understated. This could have lead to an inconsistency and inaccuracy in the results.

  2. The rate of reaction between sodium thiosulfate and hydrochloric acid

    * Square of blank paper. * 3 x 50 ml burettes (Uncertainty: � 0.5 ml). * 3 x funnels. * Thermometer (Uncertainty:� 0.05 �C). * 3 x retort stands. * Bench mat. * Risk assessment: * The procedure uses corrosive hydrochloric acid and the reaction produces poisonous sulfur dioxide.

  1. Aim. To find the identity of X(OH)2 (a group II metal hydroxide) by determining ...

    0.00196 0.0238 0.770 Ba(OH)2 171.36 0.00196 0.335 3.700 Uncertainties: The uncertainty in measurement: Uncertainty due to pipette of 25.000 cm3 : Volume of X(OH)2 = � 0.100 cm3 Percentage uncertainty = (0.1/25) X 100 = 0.400% Uncertainty due to Burrette of 50.000 cm3: Assumed due to measured volume of 19.675

  2. Surface area vs Rate of Reaction

    Some are larger than others. In trial 1, to achieve 0.6g, we needed 4 small chips. In trial 2, we used 1 large chip and another smaller chip. In the last trial, we used medium-sized chip. The result shows that trial 1, with the most number of chips, thus greatest surface area, has the fastest reaction rate.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work