• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Crows Dropping Nuts Math Portfolio

Extracts from this document...

Introduction


In this project, I will attempt to model the function of a group of crows dropping various size nuts from varying heights. The model will help to predict the number of drops it takes to break open nuts from even more heights.

The following table shows the average number of drops it takes to break open a large nut from varying heights.

Large Nuts

Height of drop (m)

1.7

2.0

2.9

4.1

5.6

6.3

7.0

8.0

10.0

13.9

Number of drops

42.0

21.0

10.3

6.8

5.1

4.8

4.4

4.1

3.7

3.2

When graphed in Excel, the points form this graph:

image00.png

To model this graph a power function can be used. There is an x variable and a y variable. For my model of the graph, I used a function with the following parameters: (a(x-b) c) + dwhere a controls the curve of the model, b controls the shifts of the model, c

...read more.

Middle

When graphed with Excel, a function of y = 46.096x-1.154 is found to be the best model of the data provided. Here it is graphed with comparison to my model:

image03.png

And with the data points:

image04.png

As you can see, the function produced by me and the function produced by technology only differ slightly. The technologically found function uses different parameters, but still has the same variables. Each function is not an exact fit to the data, but both models are fairly close.

The following table shows the average number of drops it takes to break open a medium nut from varying heights.

Medium Nuts

Height of drop (M)

1.5

2.0

3.0

4.0

5.0

6.0

7.0

8.0

10.0

15.0

Number of drops

-

-

27.1

18.3

12.2

11.1

7.4

7.6

5.8

3.6

When graphed with my large nut function, it appears as follows:

image05.png

My

...read more.

Conclusion

image08.png

My model/function now fits the small nut data better after this adjustment. This function is limited though. It would be better to create a whole new function to account for the medium nut size than to use the model from the large nut size. This new model/function would possibly create a better fit than using the large nut size function. Also, the data for the small nut seems more erroneous and spread out with lots of extremities. My model gives a good representation of the small nut data, but is not an exact fit, making this model limited.

In this project, I created functions that served as models for various sizes nuts. Using this data properly, one could possible predict the amount of drops it might take to crack open a nut from even more heights than are listed here.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ���+�1/4�Y���06l��ٳ����"���Z@Pi��ҧ%=5h�*��4|U��AF�>��&^�-�(c)����� �hl��n�2jY�=�K{���.x�á³ï¿½ï¿½3)2jI'6]��Q�F�� ~��-{��u%Q�Q��� e��#����i�(r)]��-Ϧ�"P��p9�y�ڵf1/2> ��m1/4è¢a���Rj!�QÛ²e � �z��A���nuQ'K�VM�y��� �>eN���׿��w���_=� W�ZE��Ï߯_�1c�L�4)xS��"� ��x-��<���<%=���E�ƥ�-7n�<����(c)S��(tm)S__?h� "�)"j��tvNp,�� ä¬>����0NI����=��73/4��X4�#x���װaC,��Z�lY:4k+8'1/2}���V�p�@9T#�������F��Ü9�zd 9r$è�+W6o��kF�--e�|-zk�Ϣ'&�Ê~(c)...�""!�n����9�ӬX���/�:D�/�(c)\��Ì"t�'-� �N9�kihÚ��qQ0Û3A��z��...��w��}Ç-�m۶���]cÔ°qÞ���Uf�{j4�HD�>��F �~�)�v��l���"_z�%T�2�!C�4i�×�)t�z��m...n(c)��)� fC��֯^�'`��'�-w�u-"G�-'�t'g¦L(tm)2t�P:qL�p�d~{t]H��O� �"�'=)��>��St��I'8J��3 �Y�'�>knY��@ �3��8�0=�)�"�,XP3/4�f�1@f!���{y!�T*�}��5 q���DRJY��m�Z�+{��iy"�...��6�d��"x�pè���f 9�3벵�����...k�vLF�!e...�%c 1/2> �nDE"*Ä¢"j �s����P�:�5�7�s�N�E/_'qh�f4kÖi�֭[-UOE ���I�#->��WѢ��TV���a�a$�"d���] �Y%���@Y-��.�Å[ �Dp������ ":(r)� UQ`zj�� �"��2������H�n sb�ק7~�>Y�h'/]�"���ZpVN��c���9~�_$1/4Z�<z��0/3/4�b�YYb���β�ZE-"��...'�s�(sj��"�hDu1~�x�*N�0� Ö-z�h�x�]1/2O�>D(tm)��'?���O{���}�N4?'�pB�w�J���*X� � R,)Z���o ��� �'�ͷ�K{e0U_|1���;�'��7��Ö?���G�^_'��pÔ¨Q?��O}��1/2UO�Z�D �scO�Í��� 7�x# ��j���_�z3/4� �e�}����w���B���/�ܳh<e�ba-'R�SsBM!...�A��&!_6�Q���~���D��f"�Ï5"(r)(r)���Oç¤ï¿½(r)++*�1/4�O���;��[4cI -*�@,/�g#��g>�(tm)W_}�S�n��-�]���~7bÄ .�� �D_1/2��ʨ٣��%!��Ä�/7��� 9vh�]H.1/2�R��.]���O*4j�ׯ���}U"��fyy�|�I�d���[%ϯ��s�3/4���ld{� �YN�+�k(r)apz�m��j��� �����...k �"_a�w��FO�_��'�5c�K.��OQ �I�{�4}?...�1/4-_>�����,]��{:v�XV|9�"�>�hY���v"95��D%���[�:��a&��'Q�p�����o~�Rۧ��_�O��k�(r)�4:b��vZQ�a��k�1/2�=��7�x�-"�4-�Ô[5{t�$�Y��i���D�;��sq��W('�l�d�--��3��=����JÉD�...�~ G(c)1/4H������T���"�z��q��(r)@��d���#�1/4������o;p�@_���b�rk 3/4����u�D-�FR��...��'K�&������

  2. A logistic model

    A peculiar outcome is observed for higher values of the initial growth rate. Show this with an initial growth rate of r=2.9. Explain the phenomenon. One can start by writing two ordered pairs (1?104 , 2.9) , (6 ? 104 , 1)

  1. Maths portfolio Crows dropping nuts

    Yet the graph can also not touch the axis, as the model will not work as well, as at 0m a y amount of times the nut has to be dropped. Therefore this creates a paradox. One function that could gimmick the original is Or the other function that could model this graph is the inverse exponential, where .

  2. Math Portfolio Type II Gold Medal heights

    Then following the same steps as above, a prediction for 2016 can be made. The height of 251cm seems reasonable looking at it purely mathematically. Within a timespan of 48 years (1932 to 1980) the height increased by 39 centimetres.

  1. Math Portfolio: trigonometry investigation (circle trig)

    equals cos(90), sin(10) equals cos(80), sin(20) equals cos(70), sin(30) equals cos(60), sin(40) equals cos(50), sin(50) equals cos(40), sin(60) equals cos(30), sin(70) equals cos(20), sin(80) equals cos(10), and sin(90) equals cos(0). Therefore, when the angle of sine and the angle of cosine are summed up, it is equal to 90; complementary.

  2. Artificial Intelligence &amp;amp; Math

    Partial evaluation - but solution is only outlined. Another solution would be to offset the ISP's cost by obtaining government and corporate sponsorship so as to pay for the additional processing computers. Commercial grants could be obtained in exchange for small, unobtrusive advertising banners.

  1. Creating a logistic model

    Model for Growth Rate = 2 When we have a new initial growth rate, the ordered pairs i.e. (un, rn) have now changed to: (60000, 1) (10000, 2) To find the linear growth factor, we must form the two equations: 2 = m(10000)

  2. Stellar Numbers math portfolio

    general statement that represents the nth triangular number in terms of n is: or in factored from. Restrictions please. The second way that this general statement could be derived is with technology. It has already been established that because the second differences are constant and not zero this, the general statement is to the second degree.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work