• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Discover how to solve inverse functions both graphically and algebraically, whilst investigating their relations, properties and patterns.

Extracts from this document...


Year 11 IB Maths HL – Inverse FunctionsMathematical Investigation

Graphical Determination of the Inverse                                                                         Fergal Banks

Problem Statement: Whilst completing this investigation, I plan to find out three main aspects about inverse functions,

  • Can we find the inverse of any given function graphically?
  • What are the properties of the inverses of some common functions?
  • Do all Functions have an inverse?

Whilst using the method, the function f(x) has an inverse f¯¹ (x) if f (f¯¹ (x))  =  x.

Method: Discover how to solve

...read more.


(3x - 1)/(x + 2) is reflected and becomes, (2x + 1)/(3 – x). This results in a mirror image of the original function.

c)        image02.png

f(x) = x³ is reflected resulting in the inverse function, g(x) = ³√x.



Using the linear function, f(x) = 4x + 8, it is clear that my results in Q2 are indeed correct, as they are confirmed by the inverse function of the above linear function. It is flipped resulting in g(x) =. I worked out the inverse function by working

...read more.


Algebraically, this can proven by showing that the inverse of y = x², is y = √x. This is due to the fact that the inverse function is in fact a mirror image of the f(x). However, as each y value has more than one x value, it cannot be a function.

Conclusion: By completing this investigation, I have been able to find out that all linear and rational functions have an inverse. However, the same cannot be said about quadratic functions because it does not fulfil the criterion of a inverse function, that each y value cannot have more than one x value. All functions that complete the vertical line test will have an inverse function.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Investigation - Properties of Quartics

    Equation of a line which passes from any two points can be found by the formula. We will now substitute the known values (co-ordinate points) and find out the equation of line. Y1 = 15 Y2 = 23 X1 = 3 X2 = 1 Therefore, the equation is: Y =

  2. Derivative of Sine Functions

    = sin2x Figure 8 reveals the curve of g�(x)=2cos2x fits the scatter plot well. Figure 9 reveals that the derivative function found by calculator overlaps g�(x)=cos(x-2). Perfect. Therefore g�(x)= bcosbx is the suitable conjecture for function f (x)=sinbx. 2. Method and findings of the derivative of f (x)=sinbx The curves

  1. Using regression analysis to solve a real time problem

    the dependent variable,and the number of times they maintained their vehicles, the average speed at which they drove their vehicles and their ages. It is easily observed that the number of times the drivers maintained their vehicles is negatively related to the number of times they had accidents but the

  2. Investigating Sin Functions

    because it is adding on to or subtracting from the value of x, and X is the horizontal values of a graph. So if we take a look at a graph with subtracting C values: Black is (y=sinx), Red is (y=sin(x-1)), Blue is (y=sin(x-2))

  1. Mathematics (EE): Alhazen's Problem

    two equations: Using positive square root: Using negative square root: Looking at these equations, it becomes evident that we could find possible solutions using a simple graphing calculator such as the TI-84. The zeros of the functions should give us the x-values of the solution.

  2. LACSAP's Functions

    Though the equation was coming up with the right numerators, they were coming in an order where it would be n+1, as opposed to n by itself. So I decided to try the formula (n+1)C2 instead to see what the results would be.

  1. Population trends. The aim of this investigation is to find out more about different ...

    is again the point at which the curve intersects the or the population axis. The number 665.7 comes from subtracting the population in the initial given year (1950) from the population in the final year, this is the amount of people which were born between those 45 years and to

  2. The purpose of this investigation is to explore the various properties and concepts of ...

    Write a message of at least 12 characters. 2. Develop a coding technique that involves an alpha numeric code and matrix multiplication. 3. Code the message and prepare a set of instructions to allow someone else to decode the message.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work