• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Fishing Rods Internal Assessment

Extracts from this document...

Introduction

Fishing Rods

SL Type II

Henry Deng

143439

Block B

Leslie

An efficient fishing rod requires numerous guides for the line or else it will get tangled. Companies must find a strategic position for them or else the rod will become obsolete. As a result, a mathematical model can help companies predict where to place these line guides in order for a successful launch. Imagine customers launching a fishing rod that gets caught up before landing in the water! Not a very pleasant experience, is it? In this portfolio, I will be finding an appropriate model that can mathematically show the placement of line guides on a fishing rod. To do so, I will be using a given diagram, whereas: a fishing rod has an overall length of 230cm. The distances for each of the guides from the tip of the fishing rod is shown in a table on the back, but I will be copying it out, so one can refer to it while reading.

Guide number (from tip)

 1

2

3

4

5

6

7

8

Distance from tip (cm)

10

23

38

55

74

96

120

149

Ninth guide on the tip, (0,0)

Before beginning, I will be identifying any parameters or constraints in relation to the fishing rod. First of all, it is common sense that a negative number of guides cannot exist in reality, just like there cannot be negative numbers of apples, and as a result, negative distances are neglected. As a result, the graph must be limited to the first quadrant because the second, third, and fourth ones contain negative numbers which don't exist in a fishing rod.

...read more.

Middle

Next, isolate the variables by multiplying  image01.png with its inverse which will result in the identity matrix. What is done on one side will result in the other side, so the final equation will look like this:

image12.png

After that, matrix “A” turns into the identity matrix and the inverse of matrix “A” is used to multiply with matrix “B”. Using technology, the answer is:

image22.png

 ∴ A = 1.21, B = 8.93, C = -0.143, rounded to three significant figures

Let's revisit the general quadratic equation and substitute these three values in.

The quadratic model of the guide placements of a fishing rod can be represented as:

image17.png

On the next page, there will be a comparison of the quadratic model with the data points.

For a cubic model, I will use the same methods except, use the general equation of a cubic equation:

image23.png

This time, 4 ordered pairs will be required and by using the same method as the previous model, I chose them in an interval of two (intervals of three does not work). The start guide is the first ordered pair, and then two up; the third guide, two up again; the fifth guide, and lastly, the end guide.

Substitution:

Equation 1: 10 = A (1) + B (1) + C (1) +D

Equation 2 : 38 = A (27) + B (9) + C (3) + D

Equation 3: 74 = A (125) + B (25) + C (5) + D

Equation 4: 149 = A (512) + B (64) + C (8) + D

Now, to represent these equations in matrix form:

image24.png

Using the same methods to isolate the unknown variables (A,B,C,D), I will multiply each side with the inverse of matrix “A”. Using technology, the answer is:

image25.png

∴ A = 0.0571, B = 0.486, C = 11.3, D = -1.

...read more.

Conclusion

th powered model is definitely the most accruate.

As stated above, both a quadratic and cubic model was solved by using matrix methods. Here's a comparison of the quadratic and cubic regression equations in relation to the model functions.

image17.png  Model Function – Quadratic

image18.pngRegression – Quadratic

image19.png Model Function – Cubic

image20.pngRegression – Cubic

As one can see, these two equations do not differ greatly as expected because essentially, a regression is a best fit line which should be equivalent to a model that passes through most of the points. Of course, using technology would result in a more accurate answer, but the use of matrix methods is crucial if one does not have knowledge about regressions.

After exploring a fishing rod with eight guides, it would be interesting to guess where  would the placement of a ninth guide be (excluding the tip) and measure the effects of this phenomenon. By using my quadratic model, it's quite simple to find out where a ninth guide could possibly be. Since it's just a general idea, the use of complicated functions are not needed; thus, a quadratic model should be sufficient.  

Let's revisit the quadratic model:

image17.png

As mentioned before, the variables: X is the distance from tip (cm) and g is the guide number (from tip). So, to find the ninth guide, all we need to do is substitute g with the number nine.

image21.png, which ends up to around 178cm.

Therefore, if a ninth guide was to be added to the fishing rod, it would be located approximately 178cm from the tip (0,0). The effects of having this ninth guide would shorten the line and therefore, it may cause difficulty fishing as it can't reach the water.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Maths Internal Assessment -triangular and stellar numbers

    By finding this link, it was possible to create an expression for the 6-stellar number which linked with the triangular numbers.

  2. A logistic model

    (?3.0 ? 10?5 )(u ) ? c 2.5 ? (?3.0 ?10?5 )(1?104 ) ? c ? c ? 2.5 ? (?3.0 ? 10?5 )(1? 104 ) ? 2.8 Hence the equation of the linear growth factor is: r ? ?3.0 ?10?5 u ? 2.8 {8} n n Using equations {1} and {2}, one can find the equation for un+1: un?1 ?

  1. Lacsap's Fractions : Internal Assessment

    = ... E6 (5) = Using the calculations above, the sixth row comes out as shown below Knowing that "1" was discarded while doing the calculations, the "1" must be added back into the row at the beginning and the end. The entire row is shown below: The seventh row is also found by doing the same as above: E7 (1)

  2. Mathematics Higher Level Internal Assessment Investigating the Sin Curve

    Moving on, we saw that the variables and correspond to the horizontal and vertical translation of the sine curve respectively. The curve is translated to the right horizontally and units vertically upwards from the original sine curve. Since we know the general rule of the variables, it can help predict

  1. Matrix Binomials. In this Math Internal Assessment we will be dealing with matrices.

    the general expression for Xnor Y n , that n must be a positive integer, therefore the limitation of n is: n Z+ Let A = aX and B = bY, where a and b are constants.

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    197 203 198 204 212 216 218 224 223 225 236 Looking at these value tables and the graph above (Graph 3); we see that while the function approximately interests with four data points; at the 24th, 28th, 36th, and the 48th year-elapsed point; with approximately the same value.

  1. SL Math IA: Fishing Rods

    The distance of each guide is a discrete value. Range = Parameters/Constraints: There are several parameters/constraints that need to be verified before proceeding in the investigation. Naturally, since we are talking about a real life situation, there cannot be a negative number of guides (x)

  2. Type I Internal Assessment (Lascap's Triangle)

    With this in mind, we can conclude Similarly, for the third element number, the difference is 3. We can see a pattern emerging and can say that parts of the equation are interchangeable. Thus we can replace these numbers by the element numbers.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work