• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How many pieces? In this study, the maximum number of parts obtained by n cuts of a four dimensional object will be analyzed by looking at the patterns of the maximum number of segments made by n cuts on a one dimensional line, the maximum number of regio

Extracts from this document...

Introduction

IB Mathematics HL Internal Assessment

How many pieces?

Candidate Number:

Emily Wang

Mr. Dramble

30 January 2012

Much of mathematics involves finding rules by looking at patterns. In this study, the maximum number of parts obtained by n cuts of a four dimensional object will be analyzed by looking at the patterns of the maximum number of segments made by n cuts on a one dimensional line, the maximum number of regions made by n cuts on a two dimensional circle, and the maximum number of parts made by n cuts on a three dimensional cuboid. The sketches, cuts and results, conjectures and proofs will be shown, and the conjecture of the formula for the maximum number of cuts for the four dimensional objects will be made according to the previous studies.

  • One Dimensional Object

For a line segment, to obtain the rule which relates the maximum number of segments (S) obtained from n cuts, we could look at examples and draw our results on a table.

image00.pngn = 1, S = 2

image01.pngn = 2, S = 3

image12.pngn = 3, S = 4

image17.pngn = 4, S = 5

image18.pngn = 5, S = 6

n

1

2

4

4

5

S

2

3

4

5

6

It can be seen that this shows an arithmetic sequence, and by using the arithmetic sequence formula, an = a1 + (n – 1)d, (an = S) it can be seenthat the common difference, d, is 1 since the values of S increase by 1 as n increases by 1.

...read more.

Middle

11

16

 Find pattern for Rn.

R1= 2 → 1 + 1 → R0+ S0

R2 = 4 → 2 + 2 → R1+ S1

R3= 7 → 4 + 3 → R2+ S2

R4= 11 → 7 + 4 → R3+ S3

R5= 16 → 11 + 5 → R4+ S4

Rn= Rn - 1 + Sn – 1

R= X + SX = R – S

Plug R and S: X = (½)n 2 + (½)n + 1 – (n + 1)→ = (½)n 2 –  ½n

R = (½)n 2 –  ½n + (n + 1 ) = (½)n 2 + (½)n + 1

  • Three Dimensional Cuboid

For a finite, three-dimensional cuboid, the maximum number of parts (P) that are obtained with n cuts are

image05.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}]}]

image06.png

Code on Wolfram Alpha Mathematica:

Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}], Orange, Opacity [1], Polygon [{{0, 15, -15}, {0, 15, 15}, {0, -15, 15}, {0, -15, -15}}]}]

image07.png

Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}], Orange, Opacity [1], Polygon [{{0, 15, -15}, {0, 15, 15}, {0, -15, 15}, {0, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 0}, {-15,15, 0}, {15, 15, 0}, {15,-15, 0}}]}]

image08.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,3,-15},{-15,4,15},{15,4,15},{15,4,-15}}], Orange, Opacity [1], Polygon [{{-1, 15, -15}, {-1, 15, 15}, {-1, -15, 15}, {-1, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 4}, {-15,15, 4}, {15, 15, -9}, {15,-15, -9}}], Yellow, Polygon [{{-6, -15, -15}, {-6, 15, -15}, {15, 15, 15}, {15, -15, 15}}]}]

image09.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,3,-15},{-15,4,15},{15,4,15},{15,4,-15}}], Orange, Opacity [1], Polygon [{{-1, 15, -15}, {-1, 15, 15}, {-1, -15, 15}, {-1, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 4}, {-15,15, 4}, {15, 15, -9}, {15,-15, -9}}], Yellow, Polygon [{{-6, -15, -15}, {-6, 15, -15}, {15, 15, 15}, {15, -15, 15}}], Red, Polygon [{{-15, -15, -15}, {-15, 15, -15}, {15, 15, 1}, {15, -15, 1}}]}]

n

1

2

3

4

5

P

2

4

8

15

26

n

1

2

3

4

5

R

2

4

7

11

16

...read more.

Conclusion

Z by plugging in (Y + X + S).

Q = Z + (1/6)n 3 + (5/6)n + 1

Plug in (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 for Q

(1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 = Z + (1/6)n 3 + (5/6)n + 1

Solve for Z: Z = (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 – ((1/6)n 3 + (5/6)n + 1)

Z = (1/24)n 4(1/4)n 3 + (11/24)n2 (1/4)n

Q = (1/24)n 4(1/4)n 3 + (11/24)n2 (1/4)n + (1/6)n 3 + (5/6)n + 1

Q = (1/24)n 4 (1/12)n 3 + (11/24)n2 + (7/12)n + 1

By using the first dimension, second dimension and third dimension, I was able to find a rule using the recursive formulae from the previous dimensions to find a pattern for the fourth dimension. The equation Qn = Qn-1+Pn-1 can be used to find the n amount of cuts for the fourth dimension, and assuming this pattern is accurate, the n amount of cuts can be found for the fifth, sixth, seventh…infinite dimensions. For example, using G as the maximum amount of cuts for the fifth dimension, the pattern for the segments resulted from n amount of cuts can be found by doing Gn = Gn-1+Qn-1, assuming that G1 is 2 because of the previous patterns. The resulting numbers can be found by using a regression test, for example, the equation for the fourth dimension, Qn = (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1, was found by using a quartic regression. This use of finding a pattern and using technology to find the equation for the pattern and verifying the pattern can help find the maximum number of parts made by n number of cuts for an object with infinite dimensions.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    $33,400 (2007 est.) $32,600 (2006 est.) note: data are in 2008 US dollars Falkland Islands (Islas Malvinas) $35,400 (2002 est.) Faroe Islands $31,000 (2001 est.) Fiji $3,900 (2008 est.) $3,900 (2007 est.) $4,200 (2006 est.) note: data are in 2008 US dollars Finland $37,200 (2008 est.)

  2. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    18000 7200 26 65 97.468 72 2.5 17544.230 7017.692 27 67.5 94.868 72 2.5 17076.300 6830.520 28 70 92.195 72 2.5 16595.180 6638.072 29 72.5 89.443 72 2.5 16099.690 6439.876 30 75 86.603 72 2.5 15588.457 6235.383 31 77.5 83.666 72 2.5 15059.880 6023.952 32 80 80.623 72 2.5 14512.064

  1. In this essay, I am going to investigate the maximum number of pieces obtained ...

    2A conjecture for the relationship between the maximum number of regions(R) and the number of chords(n). Use graphical analysis to sketch the graph related to the variables n and R suggests that the relationship between them could be quadratic, and so we might assume that R=an�+bn+c Substituting the first three

  2. Statistics project. Comparing and analyzing the correlation of the number of novels read per ...

    N 30 Mode= 61-80, meaning that the largest number of girls gained marks within that range Median: = 15.5th value: 40-60. median value shows that midway modal mark % of the girls was lower, showing poorer academic status of the girls NUMBER OF BOOKS READ (GIRLS)

  1. Logarthimic Patterns

    By taking the natural log of the argument and dividing it by the natural log of the base we obtain the answers of the first and second answers.

  2. Math Studies - IA

    These two numbers can then be compared. Whenever the calculated value is below 1, US wins, and when it is above 1, Europe wins. A value of 1 represents a tie because for example a Ryder Cup final score of 14 - 14 is ()

  1. In this portfolio, I am required to investigate the number of regions obtained by ...

    No of regions obtained (R) Diagram 1 2 2 4 3 7 4 11 5 16 After drawing all the sketches and finding the number of regions obtained, I proceeded to find the pattern of the sequence. First I found the difference between the terms of the sequence of number of regions.

  2. Gold Medal heights IB IA- score 15

    Algebraically approaching the function Amplitude (a) Period (k) The year with lowest height is 1932, and highest height is 1980. Therefore, multiplying the difference by two will give the distance of one cycle (between two successive max and/or min). Horizontal stretch/ compression (b) Sub in value of k This will not be converted to degree in order to maintain exact value.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work