• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How many pieces? In this study, the maximum number of parts obtained by n cuts of a four dimensional object will be analyzed by looking at the patterns of the maximum number of segments made by n cuts on a one dimensional line, the maximum number of regio

Extracts from this document...

Introduction

IB Mathematics HL Internal Assessment

How many pieces?

Candidate Number:

Emily Wang

Mr. Dramble

30 January 2012

Much of mathematics involves finding rules by looking at patterns. In this study, the maximum number of parts obtained by n cuts of a four dimensional object will be analyzed by looking at the patterns of the maximum number of segments made by n cuts on a one dimensional line, the maximum number of regions made by n cuts on a two dimensional circle, and the maximum number of parts made by n cuts on a three dimensional cuboid. The sketches, cuts and results, conjectures and proofs will be shown, and the conjecture of the formula for the maximum number of cuts for the four dimensional objects will be made according to the previous studies.

  • One Dimensional Object

For a line segment, to obtain the rule which relates the maximum number of segments (S) obtained from n cuts, we could look at examples and draw our results on a table.

image00.pngn = 1, S = 2

image01.pngn = 2, S = 3

image12.pngn = 3, S = 4

image17.pngn = 4, S = 5

image18.pngn = 5, S = 6

n

1

2

4

4

5

S

2

3

4

5

6

It can be seen that this shows an arithmetic sequence, and by using the arithmetic sequence formula, an = a1 + (n – 1)d, (an = S) it can be seenthat the common difference, d, is 1 since the values of S increase by 1 as n increases by 1.

...read more.

Middle

11

16

 Find pattern for Rn.

R1= 2 → 1 + 1 → R0+ S0

R2 = 4 → 2 + 2 → R1+ S1

R3= 7 → 4 + 3 → R2+ S2

R4= 11 → 7 + 4 → R3+ S3

R5= 16 → 11 + 5 → R4+ S4

Rn= Rn - 1 + Sn – 1

R= X + SX = R – S

Plug R and S: X = (½)n 2 + (½)n + 1 – (n + 1)→ = (½)n 2 –  ½n

R = (½)n 2 –  ½n + (n + 1 ) = (½)n 2 + (½)n + 1

  • Three Dimensional Cuboid

For a finite, three-dimensional cuboid, the maximum number of parts (P) that are obtained with n cuts are

image05.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}]}]

image06.png

Code on Wolfram Alpha Mathematica:

Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}], Orange, Opacity [1], Polygon [{{0, 15, -15}, {0, 15, 15}, {0, -15, 15}, {0, -15, -15}}]}]

image07.png

Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,0,-15},{-15,0,15},{15,0,15},{15,0,-15}}], Orange, Opacity [1], Polygon [{{0, 15, -15}, {0, 15, 15}, {0, -15, 15}, {0, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 0}, {-15,15, 0}, {15, 15, 0}, {15,-15, 0}}]}]

image08.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,3,-15},{-15,4,15},{15,4,15},{15,4,-15}}], Orange, Opacity [1], Polygon [{{-1, 15, -15}, {-1, 15, 15}, {-1, -15, 15}, {-1, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 4}, {-15,15, 4}, {15, 15, -9}, {15,-15, -9}}], Yellow, Polygon [{{-6, -15, -15}, {-6, 15, -15}, {15, 15, 15}, {15, -15, 15}}]}]

image09.png

Code on Wolfram Alpha Mathematica: Graphics3D[{Green,Opacity[.3],Cuboid[{-10,-10,-10},{10,10,10}],Blue,Opacity[1],Polygon[{{-15,3,-15},{-15,4,15},{15,4,15},{15,4,-15}}], Orange, Opacity [1], Polygon [{{-1, 15, -15}, {-1, 15, 15}, {-1, -15, 15}, {-1, -15, -15}}], Purple, Opacity[1], Polygon [{{-15, -15, 4}, {-15,15, 4}, {15, 15, -9}, {15,-15, -9}}], Yellow, Polygon [{{-6, -15, -15}, {-6, 15, -15}, {15, 15, 15}, {15, -15, 15}}], Red, Polygon [{{-15, -15, -15}, {-15, 15, -15}, {15, 15, 1}, {15, -15, 1}}]}]

n

1

2

3

4

5

P

2

4

8

15

26

n

1

2

3

4

5

R

2

4

7

11

16

...read more.

Conclusion

Z by plugging in (Y + X + S).

Q = Z + (1/6)n 3 + (5/6)n + 1

Plug in (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 for Q

(1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 = Z + (1/6)n 3 + (5/6)n + 1

Solve for Z: Z = (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1 – ((1/6)n 3 + (5/6)n + 1)

Z = (1/24)n 4(1/4)n 3 + (11/24)n2 (1/4)n

Q = (1/24)n 4(1/4)n 3 + (11/24)n2 (1/4)n + (1/6)n 3 + (5/6)n + 1

Q = (1/24)n 4 (1/12)n 3 + (11/24)n2 + (7/12)n + 1

By using the first dimension, second dimension and third dimension, I was able to find a rule using the recursive formulae from the previous dimensions to find a pattern for the fourth dimension. The equation Qn = Qn-1+Pn-1 can be used to find the n amount of cuts for the fourth dimension, and assuming this pattern is accurate, the n amount of cuts can be found for the fifth, sixth, seventh…infinite dimensions. For example, using G as the maximum amount of cuts for the fifth dimension, the pattern for the segments resulted from n amount of cuts can be found by doing Gn = Gn-1+Qn-1, assuming that G1 is 2 because of the previous patterns. The resulting numbers can be found by using a regression test, for example, the equation for the fourth dimension, Qn = (1/24)n 4 – (1/12)n3 + (11/24)n2 + (7/12)n + 1, was found by using a quartic regression. This use of finding a pattern and using technology to find the equation for the pattern and verifying the pattern can help find the maximum number of parts made by n number of cuts for an object with infinite dimensions.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    $4,500 (2007 est.) $4,000 (2006 est.) note: data are in 2008 US dollars Germany $34,800 (2008 est.) $34,900 (2007 est.) $34,000 (2006 est.) note: data are in 2008 US dollars Ghana $1,500 (2008 est.) $1,400 (2007 est.) $1,300 (2006 est.)

  2. In this essay, I am going to investigate the maximum number of pieces obtained ...

    2A conjecture for the relationship between the maximum number of regions(R) and the number of chords(n). Use graphical analysis to sketch the graph related to the variables n and R suggests that the relationship between them could be quadratic, and so we might assume that R=an�+bn+c Substituting the first three

  1. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    72 2.5 23469.129 9387.651463 12 30 128.452 72 2.5 23121.419 9248.567 13 32.5 126.491 72 2.5 22768.399 9107.360 14 35 124.499 72 2.5 22409.819 8963.928 15 37.5 122.475 72 2.5 22045.408 8818.163 16 40 120.416 72 2.5 21674.870 8669.948 17 42.5 118.322 72 2.5 21297.887 8519.155 18 45 116.190 72

  2. Statistics project. Comparing and analyzing the correlation of the number of novels read per ...

    N 30 Mode= 61-80, meaning that the largest number of girls gained marks within that range Median: = 15.5th value: 40-60. median value shows that midway modal mark % of the girls was lower, showing poorer academic status of the girls NUMBER OF BOOKS READ (GIRLS)

  1. Math Studies - IA

    Their victory was therefore this amount bigger: Hence, Europe performed 1.24 times better (24%) than the US. In 2004 and 2006, Europe also won win a winning score of 181/2 to 91/2. Hence Europe performed 1.95 better (94.7%) than the US in 2004 and 2006.

  2. Logarithms. In this investigation, the use of the properties of ...

    For example if... a = -1 b = 5 x = 125 logabx = log(-1)(5)125 substitute the values in for a, b, and x = log-5125 combine = log125/log-5 by using change-of-base, you can clearly see the negative logarithm which does not exist Another limitation of cd/c+d = logabx is that ab = 1.

  1. In this portfolio, I am required to investigate the number of regions obtained by ...

    No of regions obtained (R) Diagram 1 2 2 4 3 7 4 11 5 16 After drawing all the sketches and finding the number of regions obtained, I proceeded to find the pattern of the sequence. First I found the difference between the terms of the sequence of number of regions.

  2. Math IA patterns within systems of linear equations

    No matter values a, b, c, d, e, or f have, any 3 x 3 system of equations where the constants follow an AS will intersect in the line . We have proven our conjecture to be true. ________________ Part B This is a new 2 x 2 system of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work