• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

IB Math HL Portfolio Type 1 (Ratio)

Extracts from this document...

Introduction

  1. image03.pngimage00.pngimage01.png

image02.png

Area A formed in the function y=x2 from y=0 to y=1 and the y-axis can be found by integrating the function with respect to y.

Area A:

 y=x2

 x=image04.pngimage04.png

 x=image81.pngimage81.png

image151.pngimage151.png dy

=[image171.pngimage171.pngimage05.pngimage05.pngimage11.pngimage11.png]image14.pngimage14.png

=[image27.pngimage27.png]image14.pngimage14.png

=(image41.pngimage41.png

=image50.pngimage50.png units2

Area B formed in the function y=x2 from x=0 to x=1 and the x-axis can be found by integrating the function with respect to x.

Area B:

y=x2

image59.pngimage59.png dx

=image66.pngimage66.png

=image72.pngimage72.png

=image79.pngimage79.png

=image86.pngimage86.png units2

Therefore, the ratio of the areas A and B for the function y=x2 is:

A : B = image50.pngimage50.png : image86.pngimage86.png

           = 2 : 1

Now try the same with the function y=xn when nimage105.pngimage105.pngZ+ and between x=0 and x=1.

Area A formed in the function from y=0 and y=1n and the y-axis can be found by integrating the function in respect for y.

Area A:

y=xn

 x=image51.pngimage51.png

image117.pngimage117.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image14.pngimage14.png

=[image157.pngimage157.png]image14.pngimage14.png

=(image164.pngimage164.png

=image165.pngimage165.png units2

Area B formed in the function from x=0 and x=1 and the x-axis can be found by integrating the function in respect of x.

Area B:

y=xn

image166.pngimage166.png dx

=image167.pngimage167.png

=image168.pngimage168.png

=image169.pngimage169.png

=image170.pngimage170.png units2

...read more.

Middle

 : image35.pngimage35.png

          = 47 : 1

In y=x47, the value of n is 47, and therefore the conjecture n : 1 works when n=47.

When n=113,

Area A:

y=x113

 x=image36.pngimage36.png

image37.pngimage37.png dy

=[image38.pngimage38.pngimage05.pngimage05.pngimage39.pngimage39.png]image14.pngimage14.png

=[image40.pngimage40.png]image14.pngimage14.png

=(image42.pngimage42.png

=image43.pngimage43.png units2

Area B:

y=x113

image44.pngimage44.png dx

=image45.pngimage45.png

=image46.pngimage46.png

=image47.pngimage47.png

=image48.pngimage48.png units2

Therefore, the ratio of the areas A and B in the function y=x113 is:

A : B = image43.pngimage43.png : image48.pngimage48.png

          = 113 : 1

In y=x113, the value of n is 113, and therefore the conjecture n : 1 works when n=113.

image49.pngimage49.png It can be assumed that the conjecture n : 1 works in any positive real numbers.

  1. To determine whether the conjecture only holds for areas between x=0 and x=1, now try the same thing but changing the values of x.

When x is from 0 to 2,

Area A:

y=xn

x=image51.pngimage51.png

image52.pngimage52.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image55.pngimage55.png

=[image56.pngimage56.png]image55.pngimage55.png

=(image57.pngimage57.png

=image58.pngimage58.png units2

Area B:

y=xn

image60.pngimage60.png dx

=image61.pngimage61.png

=image62.pngimage62.png

=image63.pngimage63.png

=image64.pngimage64.png units2

Therefore, the ratio of the areas A and B when x is between 0 and 2 is:

A : B = image58.pngimage58.png : image64.pngimage64.png

          = n : 1 ………. Conjecture works

When x is from 1 to 2,

Area A:

y=xn

x=image51.pngimage51.png

image65.pngimage65.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image67.pngimage67.png

=[image56.pngimage56.png]image67.pngimage67.png

=(image68.pngimage68.png

=image58.pngimage58.pngimage69.pngimage69.png

=image70.pngimage70.png units2

Area B:

y=xn

image71.pngimage71.png dx

=image73.pngimage73.png

=image74.pngimage74.png

=image75.pngimage75.png

=image76.pngimage76.png

=image77.pngimage77.png units2

...read more.

Conclusion

A : B = image122.pngimage122.png   : image127.pngimage127.png

          = n : 1 ………. Conjecture works

image128.pngimage128.pngs.

  1. When y=xn, x is between a and b and y is between an and bn,

Area A:

y=xn

x=image51.pngimage51.png

image129.pngimage129.png dy

=image130.pngimage130.png

=image131.pngimage131.png

=(image132.pngimage132.png

=image133.pngimage133.png

=n(image134.pngimage134.png units2

Area B:

y=xn

image135.pngimage135.png dx

=image136.pngimage136.png

=(image134.pngimage134.png units2

Therefore, the ratio of the areas A and B is,

A : B = n(image134.pngimage134.png : (image134.pngimage134.png

          = n : 1 ………. Conjecture works

image49.pngimage49.pngThe conjecture n : 1 is true for the general case y=xn from x=a to x=b where a<b and the area A is defined as y=xn, y=an, y=bn and the y-axis and the area B is defined as y=xn, x=a, x=b and the x-axis.

  1. (a) We need to find the volume B in order to find out the volume A so we start off with volume B.

Volume B:

y=xn

image137.pngimage137.png dx

=image138.pngimage138.png

=image139.pngimage139.png

=image140.pngimage140.png units3

And then volume A.

Volume A:

image141.png

=image142.pngimage142.png

=image143.pngimage143.png

=image144.pngimage144.png

=image145.pngimage145.png

=image146.pngimage146.png

=image147.pngimage147.png units3

Therefore, the ratio of the volumes A and B is:

A : B = image147.pngimage147.png : image140.pngimage140.png

          =2n : 1

image148.png

(b)Volume A:

y=xn

x=image51.pngimage51.png

image149.pngimage149.png dy

=image150.pngimage150.png

=image152.pngimage152.png

=image153.pngimage153.png

=image154.pngimage154.png units3

Volume B:

image155.png

=image156.pngimage156.png

=image158.pngimage158.png

=image159.pngimage159.png

=image160.pngimage160.png

=image161.pngimage161.png

=image162.pngimage162.png units3

Therefore, the ratio of the volumes A and B is:

A : B = image154.pngimage154.png : image162.pngimage162.png

          = n : 2

image163.png

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IB HL math portfolio type II. Deduce the formula Sn = ...

    and (11 + 13) III. (5 + 19) and (9 + 15) Then for the general arithmetic sequence a1, a2, a3, ... an-1, an, state the general conclusion for I. II. and III. Solution: Let a1 = 3, a2 = 5, a3 = 7 ... a10 = 21 I.

  2. Extended Essay- Math

    n)�<1/4F1/4�|]�):���B'...CE�E)���"%�%�����edde�t���!.�Ue\��:*�(c)f�V��k]v=�r��Fb��&��8�-NX-Z%X�Yo���:lbl��p��3���k���n���gÉIo:���(c)�"��F�...��`�����p1��G"�"�~�wIhJ�"Ì"-j��--#1/23"�"� Ge����ys���s��L�=nSx(c)X��`(c)M٠���Uv�3/4���(c)1/2RWZ��ܴ���%��o(r)6*f���t�3/4�F��~���Û���� ���>�{�������W�ӭ3�Y�\� ���g�W�2�J�W(r)ն��u�?�my��B�D�� �BxHr"R j��_��a8>��'���&U�a�Z�.@��W1*� �KÂb�c pX��(n/"����" �:� �HJ$�Ѹ�< '"i�h��T�:�u�o#5�3�?e...1���(c)�Y-�K<+k�;;�����I���Et=�s�7�O����QA/!Ea��;'~�Z�<�X oI;)ci-UYe9y Ek���*��uj�*4��"�/��(c)����g�L(tm)i�WYlZ�Z����N����"�sD�-(r)g�>�V���9�%�K����O � ";�� ] ��������-�7�y'\rjÊ�i�Y#Y�������gs�1�^�ޣ��V ���OJbJ'�u*jN�""OM��>[W�T�W�=_��x�ɺy�%�2���kJ���1/2;V" vs�h1/2�� �� ��3r7�3/4��'���c �7��>"��է^3/4<�Za�����4g�N-�|X]<�i�/��-WF3/4��ƶ���q}�Æ�j['~�_8� ��$�h?j�&a,�����>$�D9��P7P_��hot9zC����c�c�X{l9�-N-�{��g��L W�B�J � M(tm)-\G+G�MgE��7��(�"e�r&#��gVk[ " �7�N� .snVD�7xO�� �' ��=3"�D��-"���WR��R��-�]�ԣ�I�O�E1/2PcL�Y�S�QwC�� Ñ`n�������դM�-�"t�r|�\�붺��g�-���O���s DP]�HhC�lDg"i�dlx<6�:I?�ujR61/2 ")"|�@Ns(r)� y3/4��� -ǰ�+�x�O"�J��*�+�"\O}=�P�_�;w��[1/2kC������K�(r)`(r)F\{�f���)���-t��&moZß[.��1/2K�-s�A��"Q�G��]-?�p|z�(tm)���(c)�/u^1/4~�F�m����� �>�.n}-��b�m�m���W�U���o]k(tm)ߵ�/�g� �8�AØ�x���g��M����������-���"����?6@Q�W��h �1/4��"(r)�������Û5H'��ް��+~�zN � �)�������s�{<L pHYs ��$tEXtSoftwareQuickTime 7.6.6 (Mac OS X)

  1. The Fibonacci numbers and the golden ratio

    Actually, - 0,618 is the limit of consecutive ratios. This is done by going backwards in the table i.e. U3, U2, U1, U0, U-1, U-2, U-3 etc. I noticed that you�ll reach the inverted Golden ratio -0.618 faster than its reciprocal. I also made table that proves my statement above.

  2. Math Portfolio Type II Gold Medal heights

    In order to get the best possible value of c the last point (112, 236) is used as it is the last point and in order with the general trend. The formulae of the function will be expanded by adding c and its value will be calculated by substituting 112 as x value and 236 as h value.

  1. Ib math HL portfolio parabola investigation

    x2 = ? x3 = ? x1 = ? x4 = SL = x2 - x1 SR = x4 - x3 D = |SL - SR| = |x2 - x1 - x4 + x3| = |() - () - ()

  2. MAths HL portfolio Type 1 - Koch snowflake

    General formula for An The general formula can be verified by putting in values from the table. Stage 4 For the diagram above I have used a software called Dr. Bill's software of the Von Koch snowflake simulation which I found online.

  1. Math Portfolio: trigonometry investigation (circle trig)

    The amplitude in the y=3cos? is resulting to 3. The period in the y=3cos? is which is approximately 6.28 when expressed to radian. Expressing it to radian the frequency is approximately 0.1592. y=3cos (-?) Reflected through the y-axis from the y=3cos? graph so it is coincident with the y=3cos?

  2. Math IB HL math portfolio type I - polynomials

    + a1 = -(an + ... + a2 + a0) then P(1) = 0 if an-1 + an-3 + ... + a1 = an + ... + a2 + a0 then P(-1) = 0 2. There is a conclusion that states: If an integer k is a zero of a

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work