• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

IB Math HL Portfolio Type 1 (Ratio)

Extracts from this document...

Introduction

  1. image03.pngimage00.pngimage01.png

image02.png

Area A formed in the function y=x2 from y=0 to y=1 and the y-axis can be found by integrating the function with respect to y.

Area A:

 y=x2

 x=image04.pngimage04.png

 x=image81.pngimage81.png

image151.pngimage151.png dy

=[image171.pngimage171.pngimage05.pngimage05.pngimage11.pngimage11.png]image14.pngimage14.png

=[image27.pngimage27.png]image14.pngimage14.png

=(image41.pngimage41.png

=image50.pngimage50.png units2

Area B formed in the function y=x2 from x=0 to x=1 and the x-axis can be found by integrating the function with respect to x.

Area B:

y=x2

image59.pngimage59.png dx

=image66.pngimage66.png

=image72.pngimage72.png

=image79.pngimage79.png

=image86.pngimage86.png units2

Therefore, the ratio of the areas A and B for the function y=x2 is:

A : B = image50.pngimage50.png : image86.pngimage86.png

           = 2 : 1

Now try the same with the function y=xn when nimage105.pngimage105.pngZ+ and between x=0 and x=1.

Area A formed in the function from y=0 and y=1n and the y-axis can be found by integrating the function in respect for y.

Area A:

y=xn

 x=image51.pngimage51.png

image117.pngimage117.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image14.pngimage14.png

=[image157.pngimage157.png]image14.pngimage14.png

=(image164.pngimage164.png

=image165.pngimage165.png units2

Area B formed in the function from x=0 and x=1 and the x-axis can be found by integrating the function in respect of x.

Area B:

y=xn

image166.pngimage166.png dx

=image167.pngimage167.png

=image168.pngimage168.png

=image169.pngimage169.png

=image170.pngimage170.png units2

...read more.

Middle

 : image35.pngimage35.png

          = 47 : 1

In y=x47, the value of n is 47, and therefore the conjecture n : 1 works when n=47.

When n=113,

Area A:

y=x113

 x=image36.pngimage36.png

image37.pngimage37.png dy

=[image38.pngimage38.pngimage05.pngimage05.pngimage39.pngimage39.png]image14.pngimage14.png

=[image40.pngimage40.png]image14.pngimage14.png

=(image42.pngimage42.png

=image43.pngimage43.png units2

Area B:

y=x113

image44.pngimage44.png dx

=image45.pngimage45.png

=image46.pngimage46.png

=image47.pngimage47.png

=image48.pngimage48.png units2

Therefore, the ratio of the areas A and B in the function y=x113 is:

A : B = image43.pngimage43.png : image48.pngimage48.png

          = 113 : 1

In y=x113, the value of n is 113, and therefore the conjecture n : 1 works when n=113.

image49.pngimage49.png It can be assumed that the conjecture n : 1 works in any positive real numbers.

  1. To determine whether the conjecture only holds for areas between x=0 and x=1, now try the same thing but changing the values of x.

When x is from 0 to 2,

Area A:

y=xn

x=image51.pngimage51.png

image52.pngimage52.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image55.pngimage55.png

=[image56.pngimage56.png]image55.pngimage55.png

=(image57.pngimage57.png

=image58.pngimage58.png units2

Area B:

y=xn

image60.pngimage60.png dx

=image61.pngimage61.png

=image62.pngimage62.png

=image63.pngimage63.png

=image64.pngimage64.png units2

Therefore, the ratio of the areas A and B when x is between 0 and 2 is:

A : B = image58.pngimage58.png : image64.pngimage64.png

          = n : 1 ………. Conjecture works

When x is from 1 to 2,

Area A:

y=xn

x=image51.pngimage51.png

image65.pngimage65.png dy

=[image53.pngimage53.pngimage05.pngimage05.pngimage54.pngimage54.png]image67.pngimage67.png

=[image56.pngimage56.png]image67.pngimage67.png

=(image68.pngimage68.png

=image58.pngimage58.pngimage69.pngimage69.png

=image70.pngimage70.png units2

Area B:

y=xn

image71.pngimage71.png dx

=image73.pngimage73.png

=image74.pngimage74.png

=image75.pngimage75.png

=image76.pngimage76.png

=image77.pngimage77.png units2

...read more.

Conclusion

A : B = image122.pngimage122.png   : image127.pngimage127.png

          = n : 1 ………. Conjecture works

image128.pngimage128.pngs.

  1. When y=xn, x is between a and b and y is between an and bn,

Area A:

y=xn

x=image51.pngimage51.png

image129.pngimage129.png dy

=image130.pngimage130.png

=image131.pngimage131.png

=(image132.pngimage132.png

=image133.pngimage133.png

=n(image134.pngimage134.png units2

Area B:

y=xn

image135.pngimage135.png dx

=image136.pngimage136.png

=(image134.pngimage134.png units2

Therefore, the ratio of the areas A and B is,

A : B = n(image134.pngimage134.png : (image134.pngimage134.png

          = n : 1 ………. Conjecture works

image49.pngimage49.pngThe conjecture n : 1 is true for the general case y=xn from x=a to x=b where a<b and the area A is defined as y=xn, y=an, y=bn and the y-axis and the area B is defined as y=xn, x=a, x=b and the x-axis.

  1. (a) We need to find the volume B in order to find out the volume A so we start off with volume B.

Volume B:

y=xn

image137.pngimage137.png dx

=image138.pngimage138.png

=image139.pngimage139.png

=image140.pngimage140.png units3

And then volume A.

Volume A:

image141.png

=image142.pngimage142.png

=image143.pngimage143.png

=image144.pngimage144.png

=image145.pngimage145.png

=image146.pngimage146.png

=image147.pngimage147.png units3

Therefore, the ratio of the volumes A and B is:

A : B = image147.pngimage147.png : image140.pngimage140.png

          =2n : 1

image148.png

(b)Volume A:

y=xn

x=image51.pngimage51.png

image149.pngimage149.png dy

=image150.pngimage150.png

=image152.pngimage152.png

=image153.pngimage153.png

=image154.pngimage154.png units3

Volume B:

image155.png

=image156.pngimage156.png

=image158.pngimage158.png

=image159.pngimage159.png

=image160.pngimage160.png

=image161.pngimage161.png

=image162.pngimage162.png units3

Therefore, the ratio of the volumes A and B is:

A : B = image154.pngimage154.png : image162.pngimage162.png

          = n : 2

image163.png

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IB HL math portfolio type II. Deduce the formula Sn = ...

    and (11 + 13) III. (5 + 19) and (9 + 15) Then for the general arithmetic sequence a1, a2, a3, ... an-1, an, state the general conclusion for I. II. and III. Solution: Let a1 = 3, a2 = 5, a3 = 7 ... a10 = 21 I.

  2. Extended Essay- Math

    n)�<1/4F1/4�|]�):���B'...CE�E)���"%�%�����edde�t���!.�Ue\��:*�(c)f�V��k]v=�r��Fb��&��8�-NX-Z%X�Yo���:lbl��p��3���k���n���gÉIo:���(c)�"��F�...��`�����p1��G"�"�~�wIhJ�"Ì"-j��--#1/23"�"� Ge����ys���s��L�=nSx(c)X��`(c)M٠���Uv�3/4���(c)1/2RWZ��ܴ���%��o(r)6*f���t�3/4�F��~���Û���� ���>�{�������W�ӭ3�Y�\� ���g�W�2�J�W(r)ն��u�?�my��B�D�� �BxHr"R j��_��a8>��'���&U�a�Z�.@��W1*� �KÂb�c pX��(n/"����" �:� �HJ$�Ѹ�< '"i�h��T�:�u�o#5�3�?e...1���(c)�Y-�K<+k�;;�����I���Et=�s�7�O����QA/!Ea��;'~�Z�<�X oI;)ci-UYe9y Ek���*��uj�*4��"�/��(c)����g�L(tm)i�WYlZ�Z����N����"�sD�-(r)g�>�V���9�%�K����O � ";�� ] ��������-�7�y'\rjÊ�i�Y#Y�������gs�1�^�ޣ��V ���OJbJ'�u*jN�""OM��>[W�T�W�=_��x�ɺy�%�2���kJ���1/2;V" vs�h1/2�� �� ��3r7�3/4��'���c �7��>"��է^3/4<�Za�����4g�N-�|X]<�i�/��-WF3/4��ƶ���q}�Æ�j['~�_8� ��$�h?j�&a,�����>$�D9��P7P_��hot9zC����c�c�X{l9�-N-�{��g��L W�B�J � M(tm)-\G+G�MgE��7��(�"e�r&#��gVk[ " �7�N� .snVD�7xO�� �' ��=3"�D��-"���WR��R��-�]�ԣ�I�O�E1/2PcL�Y�S�QwC�� Ñ`n�������դM�-�"t�r|�\�붺��g�-���O���s DP]�HhC�lDg"i�dlx<6�:I?�ujR61/2 ")"|�@Ns(r)� y3/4��� -ǰ�+�x�O"�J��*�+�"\O}=�P�_�;w��[1/2kC������K�(r)`(r)F\{�f���)���-t��&moZß[.��1/2K�-s�A��"Q�G��]-?�p|z�(tm)���(c)�/u^1/4~�F�m����� �>�.n}-��b�m�m���W�U���o]k(tm)ߵ�/�g� �8�AØ�x���g��M����������-���"����?6@Q�W��h �1/4��"(r)�������Û5H'��ް��+~�zN � �)�������s�{<L pHYs ��$tEXtSoftwareQuickTime 7.6.6 (Mac OS X)

  1. The Fibonacci numbers and the golden ratio

    Actually, - 0,618 is the limit of consecutive ratios. This is done by going backwards in the table i.e. U3, U2, U1, U0, U-1, U-2, U-3 etc. I noticed that you�ll reach the inverted Golden ratio -0.618 faster than its reciprocal. I also made table that proves my statement above.

  2. Ib math HL portfolio parabola investigation

    x2 = ? x3 = ? x1 = ? x4 = SL = x2 - x1 SR = x4 - x3 D = |SL - SR| = |x2 - x1 - x4 + x3| = |() - () - ()

  1. Math Portfolio Type II Gold Medal heights

    One of the main problems as one can see from Figure 4.0 and as repetitively mentioned is the fact that the graph does not give a valid value for x=0. To change that a d has to be defined as it shifts the asymptote.

  2. Maths Portfolio Shady Areas

    Though we are able to further simplify this equation to: As is was simply Therefore the most general formula is: Consider the areas under the following three curves, from x=1 to x=3: X y 2g 1 0.629960525 - 1.25 0.731004435 1.462009 1.5 0.825481812 1.650964 1.75 0.914826428 1.829653 2 1 2

  1. Math IB HL math portfolio type I - polynomials

    + a1 = -(an + ... + a2 + a0) then P(1) = 0 if an-1 + an-3 + ... + a1 = an + ... + a2 + a0 then P(-1) = 0 2. There is a conclusion that states: If an integer k is a zero of a

  2. MAths HL portfolio Type 1 - Koch snowflake

    = 0.1 units Relationship between n and Length of each side: Ln Length of each side n (stage) f(n) 0 1 1 2 3 We can see from the table on the right that it is a geometric progression since every successive term after the 1st term is being multiplied by the common ratio.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work