• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9

IB Math HL Portfolio Type I Series and Induction

Extracts from this document...

Introduction

Mathematics Higher Level Portfolio Type I Series and Induction

Acknowledgement

Question sheet should directly be given from your IB Mathematics HL teachers. This is due to the fact that IB students are not allowed to hold any question paper; every candidate must finish this coursework and return the question sheet in five days. Therefore I was not able to include any questions in this portfolio.

Introduction

This Investigation of the Series and Induction Portfolio for Math HL brings out that the sum of terms of series following a certain pattern can be predicted as expressions by studying these patterns. With the resourceful use of a calculator, studying the graphs and

Middle

=1∙2∙3++5∙6∙7 = 210+210 = 420

T6 =1∙2∙3++6∙7∙8 = 420+336 = 756

Tk =1∙2∙3++n(n+1)(n+2)

B) Tn =

=

=

=

=

Tn =

C) 1∙2∙3+2∙3∙4+3∙4∙5++n(n+1)(n+2) =

i) n=1

1∙2∙3 =

6 = 6

ii) n=k

1∙2∙3+2∙3∙4+3∙4∙5++k(k+1)(k+2) =

1∙2∙3+2∙3∙4+3∙4∙5++k(k+1)(k+2)+(k+1)(k+2)(k+3) = + (k+1)(k+2)(k+3)

1∙2∙3+2∙3∙4+3∙4∙5++k(k+1)(k+2)+(k+1)(k+2)(k+3) =

1∙2∙3+2∙3∙4+3∙4∙5++k(k+1)(k+2)+(k+1)(k+2)(k+3) =

iii) n=k+1

1∙2∙3+2∙3∙4+3∙4∙5++(k+1)(k+2)(k+3) =

D) 13+23+33+43++n3

=

=

=

=

=

=

=

Question 4

A)

U1 =1∙2∙3∙4 = 24

Conclusion

+1)(k+2)(k+3)+ (k+1)(k+2)(k+3)(k+4)   =

iii) n=k+1

1∙2∙3∙4+2∙3∙4∙5+3∙4∙5∙6++(k+1)(k+2)(k+3)(k+4)   =

D) 14+24+34+44++n4

=

=

Question 5

Use of the Pascal’s triangle

1

1  2  1

1  3  3  1

1  4  6  4  1

1  5  10 10 5  1

1  6  15  20 15  6  1

1  7  21  35  35 21  7  1

1  8 28 56  70  56  28  8  1

…… And so on

By using Pascal’s triangle, we can get the results with binomial theorem.

We could use this triangle to get  and put those coefficients to

(n+1)k+1nk+1= ank+bnk-1+cnk-2+1

n=1

2k+1–1k+1= a∙1k+b∙1k-1+c∙1k-2+1

n=2

3k+1–2k+1= a∙2k+b∙2k-1+c∙2k-2+1

n=m

(m +1)k+1 m k+1= ank+bnk-1+cnk-2+1

= a(1 k +2 k +3 k ++ m k ) + b(1 k-1 +2 k-1 +3 k-1 ++ m k-1)+ …+ m

= 1 k+2 k+3 k+4 k++n k ={(m+1) k+1–1–b(1 k-1 +2 k-1 +3 k-1 ++ m k-1)+–m}

Those a, b, c, d represents the coefficients. We can simply get the coefficient from the Pascal’s triangle.

-  -

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

Related International Baccalaureate Maths essays

1. Math IB HL math portfolio type II. Deduce the formula Sn = ...

+ (a2 + a n-1) + (a3 + a n-2) = 15 3 (a1 + an) = 15 a1 + an = a2 + an-1 = ... = an + a1 (a1 + an) = 5 Sn = n (a1 +an)

2. Extended Essay- Math

ï¿½ï¿½#lï¿½ï¿½oï¿½ï¿½ï¿½ï¿½ Í³y"ï¿½ï¿½mß'ï¿½ï¿½Ìï¿½*...Fï¿½'ï¿½- ï¿½e-jADNï¿½2lï¿½ï¿½ï¿½"ï¿½ï¿½gtñmï¿½Oï¿½Ka_ï¿½=Mï¿½ï¿½nï¿½|ï¿½&qï¿½i6ï¿½)ï¿½ï¿½(tm)\$ï¿½ï¿½1ï¿½ï¿½Ä´aÙï¿½m0p% ï¿½ ï¿½"h5a"Gï¿½ï¿½ï¿½...ï¿½bzï¿½U>ï¿½95ï¿½Dï¿½ï¿½sï¿½qÌ¢!ï¿½-ï¿½ 0 T...Bbe,ï¿½ï¿½ÎJ"ï¿½ ]!g"ï¿½b1/4tï¿½ï¿½ï¿½ï¿½3/4ï¿½qkï¿½ï¿½Yï¿½ï¿½9ï¿½3/4ï¿½vï¿½rï¿½]ï¿½4tÒ¦ï¿½ï¿½&ï¿½ï¿½[ï¿½9Nï¿½sRï¿½ï¿½ï¿½|ï¿½ h(tm)ï¿½dï¿½ï¿½ï¿½ï¿½)ï¿½ï¿½cï¿½_ï¿½' }M1/4"j ï¿½ï¿½<[email protected]ï¿½ï¿½Gï¿½(tm)1/4*ï¿½Ïï¿½ï¿½Íï¿½ \$ï¿½ï¿½jï¿½ ï¿½*(tm)ï¿½9ï¿½Kï¿½-1ï¿½ï¿½Ë¦upï¿½ï¿½ï¿½;% ï¿½ï¿½btï¿½'ï¿½ï¿½3/4ï¿½ï¿½[ï¿½ï¿½uï¿½ï¿½)Jï¿½It"p"ï¿½-ï¿½hnï¿½tï¿½\$ï¿½ï¿½ ï¿½m?c ?ï¿½...{`"b/ï¿½mï¿½ï¿½ï¿½ï¿½ Ò8Flkï¿½&fSh2stj[vï¿½;ï¿½kï¿½ï¿½cï¿½hWï¿½ï¿½*ï¿½ï¿½O0dï¿½- ï¿½ï¿½0eï¿½-ï¿½N ~'zIï¿½ï¿½ï¿½_ßï¿½>Dsï¿½Ùï¿½ï¿½ ï¿½=-_dï¿½ï¿½0ï¿½E1^ï¿½*ï¿½Jï¿½aXE+(tm)Vï¿½ngï¿½ï¿½Rï¿½ï¿½Lqï¿½Cï¿½"(r).z}ï¿½o6jï¿½ï¿½DNLkï¿½ ï¿½(tm)ï¿½(r)ï¿½4"ï¿½qXZÛ´4ï¿½ï¿½Fï¿½&ï¿½Uï¿½ï¿½ï¿½Qï¿½ï¿½ï¿½Qï¿½...pUï¿½ï¿½Öï¿½ )iï¿½>o;_>4:loï¿½u0E>ï¿½Tï¿½ï¿½Y:ï¿½ï¿½1/2ï¿½ï¿½Cï¿½ï¿½ÞW(tm)1/4ZR#Piï¿½ï¿½]LH_!~ï¿½-(tm)ï¿½ï¿½ ï¿½-Mï¿½-ï¿½ |ï¿½|ï¿½(c)...ï¿½ï¿½ ï¿½= 'Ûrmï¿½pï¿½Pï¿½ï¿½ï¿½=ï¿½ï¿½ï¿½ï¿½ï¿½?ï¿½ï¿½1/2ï¿½o(ï¿½ï¿½-ï¿½?7ï¿½*Lï¿½n6n(tm)vï¿½ß³hï¿½.Hb;... '7}>'"ï¿½"_ï¿½qï¿½ï¿½nÚçª´=ï¿½cï¿½ï¿½ï¿½]-ï¿½...4ï¿½fï¿½ \ï¿½5ï¿½H ï¿½ï¿½>ï¿½3/4ï¿½dï¿½ï¿½*I?ï¿½ï¿½ï¿½H |4SAï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ ...ï¿½Wï¿½6-ï¿½ï¿½8ï¿½[ï¿½bf -ï¿½ ï¿½Óï¿½ï¿½ï¿½6ï¿½BHÂAï¿½m(7ï¿½Ó£...?ï¿½-=ï¿½1/2ï¿½} |ï¿½_)ï¿½2L(c)ES_1lï¿½Iï¿½ï¿½}ï¿½fï¿½ï¿½#iï¿½bï¿½ï¿½Êï¿½ï¿½"ï¿½.mï¿½Ç°ï¿½Ò#/Xi"!ï¿½Lï¿½ï¿½ï¿½ ï¿½J:ï¿½ï¿½ï¿½"ï¿½Qï¿½ï¿½iï¿½ S)kg\ï¿½ï¿½ï¿½ï¿½ kï¿½ ï¿½qØ¸ï¿½ï¿½ï¿½"ï¿½ï¿½O?A_ï¿½ï¿½ï¿½j"= .ï¿½ï¿½~2...ï¿½H"pï¿½ï¿½iï¿½ï¿½oï¿½ï¿½'^'@ï¿½ï¿½\$ï¿½Uo ï¿½zï¿½"RÕb9Ç°+"ï¿½tï¿½=ï¿½ï¿½bï¿½ï¿½\$"Ê¥ï¿½m=ï¿½ï¿½(c)Mï¿½ï¿½Ô¥`ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½#ï¿½#Rz_ ï¿½ï¿½brï¿½1/41/2 ï¿½ï¿½ï¿½[email protected](tm)ï¿½ï¿½%tÞ¸1IVï¿½`ï¿½z=ï¿½Iï¿½z- aï¿½ï¿½ï¿½15TÐï¿½ï¿½(tm)ï¿½ Aï¿½ 0~ï¿½[M m)ï¿½Υï¿½oï¿½Y-ï¿½3/4 Ë´ï¿½@Ar]ï¿½_-Vï¿½k"[~G'ï¿½e`ÄZï¿½"eï¿½ ï¿½?ï¿½-oa1/2...ï¿½ï¿½a0ï¿½ï¿½Tï¿½wmï¿½ Eï¿½+...ï¿½kKï¿½Ø¿%ï¿½ï¿½ï¿½'ï¿½ÍµK=ï¿½R...σ ^

1. MAths HL portfolio Type 1 - Koch snowflake

I have used another free online software in order to simulate this. Verifying the values using the diagrams: Number of sides: From the diagrams above we can see that each successive iteration has transformed each side into four different sides and of a smaller length.

2. Ib math HL portfolio parabola investigation

(see Graph 1) Graph 1: Value of a=1 4. Then I found out the values of (X2 - X1) and (X4 - X3) and called them SL and SR respectively. 5. I finally calculated the value of D = |SL - SR| These results are illustrated in table 1.

1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

in a graphing calculator. Y= 41.896e^-.1863x Step 5: find the new values Use the table to find the new values up till the next dose at the 12 hour and repeat the same procedure here. Interpretation The reasonableness of Model B is logical, for all my assumptions are true according to Model B.

2. Math Portfolio: trigonometry investigation (circle trig)

and quadrant 3 -90< ?<-180, quadrant 2 which is -180< ?<-270 are negative. Tangent of theta in counter clockwise form The value of Tangent ? of quadrant 1 0<?<90 and quadrant 3 which is 180< ?<270 are positive range and quadrant 2 90< ?<180, quadrant 4 270<?<360 are negative range.

1. Math IA- Type 1 The Segments of a Polygon

n was added to that value again, it would only be 1 unit away from the numerator value. If one were to apply this into mathematical terms, then it would look like the following. n2 + n + 1 = Numerator values Therefore, if the two equations that were conjectured

2. Shadow Functions Maths IB HL Portfolio

If we want to generalise an expression for the shadow function, we need to reconsider the definition of the shadow function in itself. It has the same vertex, but opposite concavity. Thus, it is reflected by the line passing through the vertex and horizontal to the x-axis: .

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to