• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

IB Math Portfolio Investigating Ratios

Extracts from this document...

Introduction

Investigating Ratios of Areas and Volumes

The aim of this portfolio is to investigate the ratio of areas form when image02.pngimage02.png is graphed between two arbitrary parameters image54.pngimage54.png and image55.pngimage55.png such that image56.pngimage56.png.

image117.jpgimage00.pngimage01.png

  1. Given the functionimage03.pngimage03.png, consider the region formed by this function from image11.pngimage11.png  to image23.pngimage23.png  and the x-axis. This area is labeled B. The region from image24.pngimage24.png  and image35.pngimage35.png and the y-axis is labeled A.

Finding the ratio of area A: area B:

image52.png
image57.png
image60.png

image62.png
image65.png
image67.png

image07.pngimage07.png The ratio of area A: area B is 2:1.

image77.pngimage82.png

Calculate the ratio of the areas for other functions of the type image02.pngimage02.png, image95.pngimage95.png between image19.pngimage19.pngand image20.pngimage20.png. image88.png

Let image96.pngimage96.png,

image42.pngimage42.png

image45.pngimage45.png

Finding the ratio of area A: area B:image97.png

image98.png
image99.png
image100.png

image101.png
image102.png
image103.png

image07.pngimage07.png The ratio of area A: area B is 3:1.

Let image104.pngimage104.png,

image66.pngimage66.png

image105.pngimage105.png

Finding the ratio of area A: area B:

image106.pngimage107.png

image07.pngimage07.png The ratio of area A: area B is 4:1.

Let image108.pngimage108.png,

image109.pngimage109.png

image110.pngimage110.png

Finding the ratio of area A: area B:

image111.pngimage112.png

image07.pngimage07.png

...read more.

Middle

image129.png
image130.png

image04.png
image05.png
image06.png

image07.pngimage07.png The conjecture is not true to negative integers.

Irrational Numbers:

Let image08.pngimage08.png,

image09.pngimage09.png

image10.pngimage10.png

Finding the ratio of area A: area B:

image12.png
image13.png
image14.png

image15.png
image16.png
image17.png

image07.pngimage07.png The ratio of area A: area B is image18.pngimage18.png:1. This means the conjecture is true to irrational values of n.

  1. This conjecture is further tested for areas not only limited between image19.pngimage19.pngand image20.pngimage20.png.

image21.pngimage21.png  , for region formed by this function from image11.pngimage11.png  to image22.pngimage22.png  and the x-axis. This area is labeled B. The region from image24.pngimage24.png  and image25.pngimage25.png and the y-axis is labeled A.

image26.pngimage26.png

Finding the ratio of area A: area B:

image27.png
image28.png
image29.png

image30.png
image31.png
image32.png

image33.pngimage34.png

image07.pngimage07.png The ratio of area A: area B is 2:1.

image21.pngimage21.png  , for region formed by this function from image23.pngimage23.png  to image22.pngimage22.png  and the x-axis. This area is labeled B. The region from image35.pngimage35.png  and image25.pngimage25.png and the y-axis is labeled A.

image26.pngimage26.png

Finding the ratio of area A: area B:

image36.png
image37.png
image38.png

image39.png
image40.png
image41.png

image07.pngimage07.png

...read more.

Conclusion

Then take into account the function image66.pngimage66.png, and the region formed by this function from image23.pngimage23.png  to image22.pngimage22.png  and the x-axis (Area A). To find the area formed on the y-axis (Area B), substitute image54.pngimage54.png and image55.pngimage55.png values as 1 and 2, into the equations image68.pngimage68.png and image69.pngimage69.png, making image35.pngimage35.png and image70.pngimage70.png.

Calculating the ratios of areas A:B:

image71.png
image72.png
image73.png

image74.png
image75.png
image76.png

image07.pngimage07.png The ratio of area A: area B is 4:1.

Next take into account the function image42.pngimage42.png, and the region formed by this function from image23.pngimage23.png  to image22.pngimage22.png  and the x-axis (Area A). To find the area formed on the y-axis (Area B), substitute image54.pngimage54.png and image55.pngimage55.png values as 1 and 2, into the equations image78.pngimage78.png and image79.pngimage79.png, making image35.pngimage35.png and image80.pngimage80.png.

Calculating the ratios of areas A:B:

image81.png
image83.png
image84.png

image85.png
image86.png
image87.png

image07.pngimage07.png The ratio of area A: area B is 3:1.

From the above three trials we can successfully conclude that my conjecture is true for the general case image02.pngimage02.png from image54.pngimage54.png and image55.pngimage55.png and for the regions stated.

To further support the conjecture:image89.png

image90.png

image91.png


image93.pngimage92.pngimage94.png

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    -�+�5�n�Fq3�x"���7�{�#��|#3/4?��ů"M�.�?!(tm)p"PK�"<"��ii�hth�hBh�h�h.� �1/4��J$�D{"��I,#^" ��hÉ´'�F������i{h��~%'H�$}' )�T@j �&1/2&� c�"�� �� "�k���BO �7 �C�B_B����A"���Â�P����a...'�Q�qc8�a�F�{�sdY"lB�'�kȷ��L(&!&#&?�}L�LL3�Xf1f ��|�f�a�E2�2� KK%�M-)V"("k�Q�+��?�x� ����.�����s�� �boa�"���"#"�8G;�+N4�$�=g"�)��.f.-.?(r)C\W�^p��'� �(c)�5�C�+<1/4<f<Q<�<�yxYy�yCx�y"y��t��|�|��>����-��/ p � � �Xt�l|%D#�.(T,�'�(�'l#1/4W��� ���H�H(c)�]'UQ1QW���sb�bb)b�^�"�ģ�"ÅH`%�%B%�$F$aI�`�J�GR�"�U�J�4FZC:B�Z�(tm) ���L��(tm)����ֲٲ�_�"�<��Ý�'W'"���T +X*d+t),+J*�)V*>Q")(tm)*e(u(-)K) (�R�PaR�Q9 ҧ�(c)���zQu^MX�G��3ufu;��� C� �k���q�W4��'� �jÔ�� �(r)Õ�ԡ��(tm)����=�;�' G�"�{�/��_�?k ab�d��P�0ư�p�H�(ͨ�elf|�x�"l�lRa��T�4���(tm)�Y�Y�9�����3 - ?��EK5�4�~+Z+G" "w�'�1�]6���M'�K[��]`-�(r)�]�����(r)�c���+�?8(8�u������������Ӥ��s1/4s� 1/2��K�˪"�k��"��[��wNw�{� ��ţ�ce���"g<U<s=�1/2�1/4'1/4������71/27����է�g���RMY��=�"�g�W��_߿�>@' 0`6P'�0p.H'�(h>X/�$x�jD� ....��� Y �z>t;�5�%��A����L�|%�5�}"z1�*�.����cF'áx��ot*~$�$^MbL�HJ-L�K�M1M9-�N�K��+�7k��4����P�oz_�PFN�L�Yf}MVh��l����o�\�u���d�L�7�!-.7&�����R �)��m�?t?_>�$���G�"�.,>�z��1ì±c����2�N���*�v��1/2�'Ó¥4��Se�e�����7*�+�VV���>(tm)wr�ʿj�"�(c)��yN�y�zf��ٶj��'lMBÍZ-�"���5�q���m��8?U�P�� �����x�|!��|"g�H�qs�E(tm)�g[X[�/�K�->^��<~��J�U�"��\;���z� jKn[ln��p�x�i��ץ��z]���7*o��<�MÓ�1/2}+��JOT�BoP�t�w��m��O�� ��޹}���A���4�u�W��@�AÛ�P�C���ê�m��-u�h�t=�~�=�7�;f<v��" Om�>-w-�x�lj�b�y�� /�'3_b^-z���5���7oZ�T�n3/45~;��������7fr>�>"���6�)�Ý7�����̧�O� ��?��"���_� -�-�,�,m/���7�o}+v+���__=��G����Ý(r)?g�7pe��][V[/�÷��(1"_� i�@-�#5";R;�@C�"��Å"+Â` !�-6'��a� �A�0

  2. Math Portfolio Type II

    Part 6 To initiate an annual harvest of 5000 fishes, let us first find out at what point the fish population stabilizes when the initial growth rate, r = 1.5. The following table shows the growth in the population over the first 20 years taking r = 1.5 and thus

  1. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    The points in contention therefore be 3, 4, 5 and 6 since 1 point, the winning point is fixed in each game. Therefore the probability of winning would be: For 4-0 result. For 4-1 result For 4-2 result For 4-3 result Therefore, the probability of Player C winning the game

  2. Shadow Functions Maths IB HL Portfolio

    C.2 Four Complex Roots Let us consider the function where . The two pairs of complex roots are and . Its shadow function is with zeros and . Choosing , , , as an example, We obtain and . Graphed: On the graph, I could not identify any points of

  1. SL Math IA: Fishing Rods

    10 23 38 55 74 96 120 149 Quadratic Regression ? Distance from Tip (cm) 11 23 37 55 74 96 121 148 Original ? Distance from Tip (cm) 10 23 38 55 74 96 120 149 By analyzing the graph and values of the quadratic regression function, it is

  2. Gold Medal heights IB IA- score 15

    Before and after these years they two functions follow a different trend. Variation of amplitude is evident between the two models. The amplitude of the regression is much less than the amplitude of the created model function. The reason for this is that the regression function only models the absolute average of the data points.

  1. Lacsap's fractions - IB portfolio

    The formula is (0.5+0.5n)×(n+1) where n is the row number. The first part is calculated by multiplying 0.5 by the row number and adding 0.5 to it (0.5n+0.5) and this gives an arithmetic sequence. This is multiplied then by the row number and the result is kn.

  2. Lacsap's Fraction Math Portfolio

    Numerator(n)=an²+bn+c As we have 3 unknown variables a, b and c, we need 3 independent equations. To find these equations, we simply put 3 already known numerators with the associated row number. Therefore I chose row number 4 , 5 , 6.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work