• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# IB Math SL Type II Portfolio - BMI Index

Extracts from this document...

Introduction

IB Math SL Type II Portfolio

January 14, 2010

In this portfolio, we will look at the median BMI indexes for females between the ages of two and twenty in the US in the year 2000; and from this data, a model function will be determined.  Body mass index (BMI) is a measure of a person’s body fat, and is calculated by this formula:

Looking at the data table we can see that there are two variables:  one being the age (in years), and the other being the BMI.  The independent variable is the age and the dependent variable is the BMI, since the BMI’s of the females depend on what age they are.  The parameters are the weight and height of the females, which both directly affect the BMI.  After using software to graph the data points, I believe the graph’s behavior is best modeled by the cosine function, since it has a wave-like shape and is periodic.  Next,

Middle

My model function is:

f(x) = 3.22*cos(0.21x – 9.95) + 18.42

As you can clearly see, the first model function fits the data almost perfectly, but it is very unrealistic for predicting BMI’s of women, as it just keeps rising and falling; so it is virtually useless for estimating the BMI of a 30-year-old woman in the US.  This is fairly obvious when looking at the cosine graph, as you can see that a 30-year-old woman has a lower BMI than a 20-year-old woman.  This is essentially impossible unless a woman became shorter and/or lost a lot of weight.  It would even be reasonable if a 30-year-old woman had the same BMI as when she was 20, but it is much more likely that she would have a

slightly increased BMI, at the least.  I believe

that a linear function will do a much more accurate job in predicting the BMI of women in the US, but only for several years

Conclusion

/td>

16.2

5

16.0

6

15.9

7

16.1

8

16.5

9

17.1

10

17.4

11

18.2

12

19.2

13

20.1

14

21.0

15

21.3

16

21.8

17

21.9

18

22.2

19

22.7

20

22.7

(Source: http://www.archive.official-documents.co.uk/document/doh/survey97/hst3-4.htm)

This BMI data for females aged 2-20 in London fits my model to a certain extent, as it also follows the same trend.  However, you can see from the graph that the data points from London are just slightly higher.  To fix this, a simple change in amplitude and vertical shift would be sufficient.  Well, the biggest limitation on my model is that you can’t accurately predict the BMI for all ages of women in the US.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Maths essays

1. ## Extended Essay- Math

-ï¿½+ï¿½5ï¿½nï¿½Fq3ï¿½x"ï¿½ï¿½ï¿½7ï¿½{ï¿½#ï¿½ï¿½|#3/4?ï¿½ï¿½Å¯"Mï¿½.ï¿½?!(tm)p"PKï¿½"<"ï¿½ï¿½iiï¿½hthï¿½hBhï¿½hï¿½h.ï¿½ ï¿½1/4ï¿½ï¿½J\$ï¿½D{"ï¿½ï¿½I,#^" ï¿½ï¿½hÉ´'ï¿½Fï¿½ï¿½ï¿½ï¿½ï¿½ï¿½i{hï¿½ï¿½~%'Hï¿½\$}' )ï¿½[email protected] ï¿½&1/2&ï¿½ cï¿½"ï¿½ï¿½ ï¿½ï¿½ "ï¿½kï¿½ï¿½ï¿½BO ï¿½7 ï¿½Cï¿½B_Bï¿½ï¿½ï¿½ï¿½A"ï¿½ï¿½ï¿½Âï¿½Pï¿½ï¿½ï¿½ï¿½a...'ï¿½Qï¿½qc8ï¿½aï¿½Fï¿½{ï¿½sdY"lBï¿½'ï¿½kÈ·ï¿½ï¿½L(&!&#&?ï¿½}Lï¿½LL3ï¿½Xf1f ï¿½ï¿½|ï¿½fï¿½aï¿½E2ï¿½2ï¿½ KK%ï¿½M-)V"("kï¿½Qï¿½+ï¿½ï¿½?ï¿½xï¿½ ï¿½ï¿½ï¿½ï¿½.ï¿½ï¿½ï¿½ï¿½ï¿½sï¿½ï¿½ ï¿½boaï¿½"ï¿½ï¿½ï¿½"#"ï¿½8G;ï¿½+N4ï¿½\$ï¿½=g"ï¿½)ï¿½ï¿½.f.-.?(r)C\Wï¿½^pï¿½ï¿½'ï¿½ ï¿½(c)ï¿½5ï¿½Cï¿½+<1/4<f<Q<ï¿½<ï¿½yxYyï¿½yCxï¿½y"yï¿½ï¿½tï¿½ï¿½|ï¿½|ï¿½ï¿½>ï¿½ï¿½ï¿½ï¿½-ï¿½ï¿½/ p ï¿½ ï¿½ ï¿½Xtï¿½l|%D#ï¿½.(T,ï¿½'ï¿½(ï¿½'l#1/4Wï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½Hï¿½H(c)ï¿½]'UQ1QWï¿½ï¿½ï¿½sbï¿½bb)bï¿½^ï¿½"ï¿½Ä£ï¿½"ÅH`%ï¿½%B%ï¿½\$F\$aIï¿½`ï¿½Jï¿½GRï¿½"ï¿½Uï¿½Jï¿½4FZC:Bï¿½Zï¿½(tm) ï¿½ï¿½ï¿½Lï¿½ï¿½(tm)ï¿½ï¿½ï¿½ï¿½Ö²Ù²ï¿½_ï¿½"ï¿½<ï¿½ï¿½Ýï¿½'W'"ï¿½ï¿½ï¿½T +X*d+t),+J*ï¿½)V*>Q")(tm)*e(u(-)K) (ï¿½Rï¿½PaRï¿½Q9 Ò§ï¿½(c)ï¿½ï¿½ï¿½zQu^MXï¿½Gï¿½ï¿½3ufu;ï¿½ï¿½ï¿½ Cï¿½ ï¿½kï¿½ï¿½ï¿½qï¿½W4ï¿½ï¿½'ï¿½ ï¿½jÔï¿½ï¿½ ï¿½(r)Õï¿½Ô¡ï¿½ï¿½(tm)ï¿½ï¿½ï¿½ï¿½=ï¿½;ï¿½' Gï¿½"ï¿½{ï¿½/ï¿½ï¿½_ï¿½?k abï¿½dï¿½ï¿½Pï¿½0Æ°ï¿½pï¿½Hï¿½(Í¨ï¿½elf|ï¿½xï¿½"lï¿½lRaï¿½ï¿½Tï¿½4ï¿½ï¿½ï¿½(tm)ï¿½Yï¿½Yï¿½9ï¿½ï¿½ï¿½ï¿½ï¿½3 - ?ï¿½ï¿½EK5ï¿½4ï¿½~+Z+G" "wï¿½'ï¿½1ï¿½]6ï¿½ï¿½ï¿½M'ï¿½K[ï¿½ï¿½]`-ï¿½(r)ï¿½]ï¿½ï¿½ï¿½ï¿½ï¿½(r)ï¿½cï¿½ï¿½ï¿½+ï¿½?8(8ï¿½uï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½Ó¤ï¿½ï¿½s1/4sï¿½ 1/2ï¿½ï¿½Kï¿½Ëª"ï¿½kï¿½ï¿½"ï¿½ï¿½[ï¿½ï¿½wNwï¿½{ï¿½ ï¿½ï¿½Å£ï¿½ceï¿½ï¿½ï¿½"g<U<s=ï¿½1/2ï¿½1/4'1/4ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½71/27ï¿½ï¿½ï¿½ï¿½Õ§ï¿½gï¿½ï¿½ï¿½RMYï¿½ï¿½=ï¿½"ï¿½gï¿½Wï¿½ï¿½_ß¿ï¿½>@' 0`6P'ï¿½0p.H'ï¿½(h>X/ï¿½\$xï¿½jDï¿½ ....ï¿½ï¿½ï¿½ Y ï¿½z>t;ï¿½5ï¿½%ï¿½ï¿½Aï¿½ï¿½ï¿½ï¿½Lï¿½|%ï¿½5ï¿½}"z1ï¿½*ï¿½.ï¿½ï¿½ï¿½ï¿½cF'áxï¿½ï¿½ot*~\$ï¿½\$^MbLï¿½HJ-Lï¿½Kï¿½M1M9-ï¿½Nï¿½Kï¿½ï¿½+ï¿½7kï¿½ï¿½4ï¿½ï¿½ï¿½ï¿½Pï¿½oz_ï¿½PFNï¿½Lï¿½Yf}MVhï¿½ï¿½lï¿½ï¿½ï¿½ï¿½oï¿½\ï¿½uï¿½ï¿½ï¿½dï¿½Lï¿½7ï¿½!-.7&ï¿½ï¿½ï¿½ï¿½ï¿½R ï¿½)ï¿½ï¿½mï¿½?t?_>ï¿½\$ï¿½ï¿½ï¿½Gï¿½"ï¿½.,>ï¿½zï¿½ï¿½1ì±cï¿½ï¿½ï¿½ï¿½2ï¿½Nï¿½ï¿½ï¿½*ï¿½vï¿½ï¿½1/2ï¿½'Ó¥4ï¿½ï¿½Seï¿½eï¿½ï¿½ï¿½ï¿½ï¿½7*ï¿½+ï¿½VVï¿½ï¿½ï¿½>(tm)wrï¿½Ê¿jï¿½"ï¿½(c)ï¿½ï¿½yNï¿½yï¿½zfï¿½ï¿½Ù¶jï¿½ï¿½'lMBÍZ-ï¿½"ï¿½ï¿½ï¿½5ï¿½qï¿½ï¿½ï¿½mï¿½ï¿½8?Uï¿½Pï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½xï¿½|!ï¿½ï¿½|"gï¿½Hï¿½qsï¿½E(tm)ï¿½g[X[ï¿½/ï¿½Kï¿½->^ï¿½ï¿½<~ï¿½ï¿½Jï¿½Uï¿½"ï¿½ï¿½\;ï¿½ï¿½ï¿½zï¿½ jKn[lnï¿½ï¿½pï¿½xï¿½iï¿½ï¿½×¥ï¿½ï¿½z]ï¿½ï¿½ï¿½7*oï¿½ï¿½<ï¿½MÓï¿½1/2}+ï¿½ï¿½JOTï¿½BoPï¿½tï¿½wï¿½ï¿½mï¿½ï¿½Oï¿½ï¿½ ï¿½ï¿½Þ¹}ï¿½ï¿½ï¿½Aï¿½ï¿½ï¿½4ï¿½uï¿½Wï¿½ï¿½@ï¿½AÛï¿½Pï¿½Cï¿½ï¿½ï¿½êï¿½mï¿½ï¿½-uï¿½hï¿½t=ï¿½~ï¿½=ï¿½7ï¿½;f<vï¿½ï¿½" Omï¿½>-w-ï¿½xï¿½ljï¿½bï¿½yï¿½ï¿½ /ï¿½'3_b^-zï¿½ï¿½ï¿½5ï¿½ï¿½ï¿½7oZï¿½Tï¿½n3/45~;ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½7fr>ï¿½>"ï¿½ï¿½ï¿½6ï¿½)ï¿½Ý7ï¿½ï¿½ï¿½ï¿½ï¿½Ì§ï¿½Oï¿½ ï¿½ï¿½?ï¿½ï¿½"ï¿½ï¿½ï¿½_ï¿½ -ï¿½-ï¿½,ï¿½,m/ï¿½ï¿½ï¿½7ï¿½o}+v+ï¿½ï¿½ï¿½__=ï¿½ï¿½Gï¿½ï¿½ï¿½ï¿½Ý(r)?gï¿½7peï¿½ï¿½][V[/ï¿½÷ï¿½ï¿½(1"_ï¿½ iï¿½@-ï¿½#5";R;ï¿½@Cï¿½"ï¿½ï¿½Å"+Â` !ï¿½-6'ï¿½ï¿½aï¿½ ï¿½Aï¿½0

2. ## Math IB SL BMI Portfolio

If this data was a record of the extremes rather than the median BMI of a population, the y values could lower than the window setting of 12 for this graph, as well as much higher than the window setting of 24.

1. ## A logistic model

Year (after Population Year Population attaining stability) 1 6.00?104 16 2.61?104 2 5.00?104 17 2.49?104 3 4.50?104 18 2.37?104 4 4.18?104 19 2.23?104 5 3.94?104 20 2.07?104 6 3.75?104 21 1.88?104 7 3.59?104 22 1.65?104 8 3.46?104 23 1.37?104 9 3.34?104 24 1.00?104 10 3.24?104 25 5.07?103 11 3.12?104 26 -2.15?103 12 3.02?104 27 - 13 2.92?104

2. ## Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

have multiple cuboids with each at a fixed height of 2.5m (refer to Fig 8 below) Fig 8. Multiple cuboids Method 8. Finding the volume of the multiple cuboids: To find the volume of the multiple cuboids: Let e.g. At level 1: At level 2: At level 3: And etc.

1. ## Body Mass Index

Therefore the horizontal translation is 20. This makes the cosine equation for the data presented in Table 1: To check whether the equation above fits the points plotted previously I graphed them both on the calculator. First as with the sine function, one must correctly (using brackets)

2. ## IB math SL type 2 project

Then, Hot'n'Cold, Inc.'s container would be the best choice for McNewton. It has to consider both the efficiency and the number of customers when they choose its new equipment. 6. Define "Capital cost" and "operating cost." How might they affect your choice?

1. ## MATH IB SL INT ASS1 - Pascal's Triangle

Moreover, I defined some diagonals within the triangle for orientation. Each diagonal has the name dr, because every fraction which is on this diagonal has the position r: d4 d3 d2 d1 d0 There is a clear pattern throughout each diagonal how the number of the denominator increases.

2. ## IB Math Methods SL: Internal Assessment on Gold Medal Heights

Hence, this hypothetical case has some weaknesses. According to the quintic function; the gold medal height in 1984 will be approximately 251 centimeters. On the other hand, the linear function gives a value of 239 centimeters for 1984. It appears that in this case, the linear function seems to be

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to