Infinite Summation - In this portfolio, I will determine the general sequence tn with different values of variables to find the formula to count the sum of the infinite sequence.

Authors Avatar

Zespół Szkół

Im. Maharadzy Jam Saheba Digvijay Sinhji

„Bednarska”

IB WORLD SCHOOL 1531

PORTFOLIO ASSIGNMENT TYPE 1

MATHEMATICAL INVESTIGATION

                                             

Set date: Monday, March 8th, 2010

Due date: Monday, March 15th, 2010

                         Name: Tra My Nguyen

                                               Candidate number:

  • Technology used:
  • Microsoft word
  • Rapid-pi
  • Microsoft Excel
  • GDC (TI-84 Plus)

In this portfolio, I will determine the general sequence tn with different values of variables to find the formula to count the sum of the infinite sequence.

I  will investigate the sum of infinite sequences tn, where:

t0 = 1, t1 =   , t2 =  , t3 =   , … , tn =   , …

        

        * a must be positive because according to the definition of logarithms:  

y = logxy   x>0, x  1,y>0

lna = logea   a>0

(approximately e = 2.718281828)

* I will use the factorial notation:     

To see how the sum changes when a changes, firstly, I am going to consider the sequence above, where    and   :

   

Let’s define Sn to be the sum of the first (n+1) terms of the sequence,   .

Using GDC, I will calculate the sums S0, S1, S2, …, S10 (giving answers correct to 6 decimal places):

 S0 = t0 = 1

S1 = S0 + t1 = 1 +   = 1.693147

S2 = S1 + t2 = 1.693147 +   = 1.933373

S3 = S2 + t3 = 1.933373 +   = 1.988877

S4 = S3 + t4 = 1.988877 +   = 1.998495

S5 = S4 + t5 = 1.998495 +   = 1.999828

S6 = S5 + t6 = 1.999828 +   = 1.999982

S7 = S6 + t7 = 1.999982 +   = 1.999997

S8 = S7 + t8 = 1.999997 +   = 1.999998322

S9 = S8 + t9 = 1.999998322 +   = 1.999998424

S10 = S9 + t10 = 1.999998424 +   = 1.999998431

Now, using Microsoft Excel, I will plot the relation between Sn and n:

From this plot, I see that the values of Sn increase as values of n increase, but don’t exceed 2, so the greatest value that Sn can have is 2. Therefore, it suggests about the values of Sn to be in domain   Sn    2  as n approaches    when x = 1 and a = 2.

Now, doing similar as in first part, I am going to consider the sequence where    and   :

    

Using GDC, I will calculate the sums S0, S1, S2, …, S10:

S0 = t0 = 1

S1 = S0 + t1 = 1 +   = 2.098612

S2 = S1 + t2 = 2.098612 +   = 2.702087

S3 = S2 + t3 = 2.702087 +   = 2.923080

S4 = S3 + t4 = 2.923080 +   = 2.983777

S5 = S4 + t5 = 2.983777 +   = 2.997113

S6 = S5 + t6 = 2.997113 +   = 2.999555

S7 = S6 + t7 = 2.999555 +   = 2.999938

S8 = S7 + t8 = 2.999938 +   = 2.999991

S9 = S8 + t9 = 2.999991 +   = 2.999997

S10 = S9 + t10 = 2.999997 +   = 2.999998

Now, using Microsoft Excel, I will again plot the relation between Sn and n:

Join now!

Again, I noticed that when   and   , the values of Sn increase as values of n increase, but don’t exceed 3.  So it suggests that Sn will be in domain 1   Sn    3 as n approaches   .

Above, I have been supposing that the greatest value for the sum of infinite sequence Sn is a. And I want to check if it’s correct with some different values of a.

Considering the general sequence where   , I will calculate the sum Sn of the first (n+1) terms for   for different values of a.

So, I will take random values for ...

This is a preview of the whole essay