• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Infinite Surds

Extracts from this document...

Introduction

MATH PORTFOLIO

Infinite Surds


Introduction

Surds: a surd is a number that can only be expressed exactly using the root sign “image00.pngimage00.png” in other words it can be defined as a positive irrational number.

Thus, a number image48.pngimage48.png is a surd if and only if:

  1.   It is an irrational number

      (b ) It is the root of a positive rational number.

The symbol  is called the radical sign. The index n is called the order of the surd and x is called the radicand.

For example:

√2 = (1.414.......) is a surd.

√3= (1.732......) is a surd.

√4= (2) is not a surd.

√5= (2.236....) is a surd.

Note: if n is a positive integer and a be a real number, then if a is irrational, image84.pngimage84.png is not a surd. Again if image84.pngimage84.png is rational, then also image84.pngimage84.png is not a surd.

Surds have an infinite number of non-recurring decimal. Hence, surds are irrational numbers and are considered infinite surds.

...read more.

Middle

image09.pngimage09.png

image10.pngimage10.png

image11.pngimage11.png

image02.pngimage02.png  x= image12.pngimage12.png  OR x= image13.pngimage13.png

image02.pngimage02.png x = image14.pngimage14.png      (x cannot have a negative value.)

Q: Considering another infinite surd image15.pngimage15.png where the first term is image17.pngimage17.png , to repeat the entire process and to find the exact value for this surd.

ANSWER:

image18.pngimage18.png= image19.pngimage19.png = 1.8477...

image20.pngimage20.png= image21.pngimage21.png  OR   image20.pngimage20.png= image22.pngimage22.png = 1.9615...

image23.pngimage23.png= image24.pngimage24.png   OR image25.pngimage25.png= image27.pngimage27.png = 1.9903...

As it is observed that image23.pngimage23.png=image27.pngimage27.png , therefore it can be understood that image25.pngimage25.png = image28.pngimage28.png as the trend has been so until now.

Hence,

→  image25.pngimage25.png = image28.pngimage28.png = 1.9975...

image29.pngimage29.png = image30.pngimage30.png  = 1.9993...

image31.pngimage31.png = image33.pngimage33.png = 1.9998...

image34.pngimage34.png = image35.pngimage35.png = 1.9999...

image36.pngimage36.png = image37.pngimage37.png = 1.9999...

image38.pngimage38.png = image39.pngimage39.png = 1.9999...

image40.pngimage40.png = image41.pngimage41.png = 1.9999...

[NOTE: VALUES OBTAINED USING THE GRAPHICAL DISPLAY CALCULATOR: CASIO fx- 9860G]

N

image42.png

1

1.8477

2

1.9615

3

1.9903

4

1.9975

5

1.9993

6

1.9998

7

1.9999

8

1.9999

10

1.9999

image44.png

From the above graph we realize as the value starts to increase after a certain number (1.999) it stabilizes and remains almost the same through out the graph. As we can see after 5 the value continues to remain the same till 10 and onwards. The general idea in both the question

...read more.

Conclusion

image06.pngimage06.png - x – k=0 we get:

image06.pngimage06.png -x-30=0

image06.pngimage06.png -6x+5x -30 =0

→ x(x-6) +5(x-6) =0

→ (x+5) (x-6) =0

Thus, x=6 OR x=-5

Hence, proved.

  1. Supposing  n =5

Then, on substituting 6 as the value of n in the general statement we get:-

image78.pngimage78.png = 6+6^2 = 42

image02.pngimage02.png k=42

Now substituting the value of k in the equation image06.pngimage06.png - x – k=0 we get:

image06.pngimage06.png - x – 42=0

image06.pngimage06.png -7x+6x -42 =0

→ x(x-7) +6(x-7) =0

→ (x+6) (x-7) =0

Thus, x=7 OR x=-6

Hence, proved.

HENCE, IT CAN BE CONCLUDED THAT EVEN AFTER USING OTHER VALUES OF “k” THE ANSWER OBTAINED IS AN INTEGER WHICH PROVES THE OBTAINED GENERAL STATEMENT VALID.

The scope of the general statement is that the need to always obtain an integer value as the answer is always satisfied by this general statement. The limitation of the general statement is that the use of a negative integer is invalid.

CONCLUSION:

By this I conclude that them I learnt how to use the surds and the correct time to use them.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    -�+�5�n�Fq3�x"���7�{�#��|#3/4?��ů"M�.�?!(tm)p"PK�"<"��ii�hth�hBh�h�h.� �1/4��J$�D{"��I,#^" ��hÉ´'�F������i{h��~%'H�$}' )�T@j �&1/2&� c�"�� �� "�k���BO �7 �C�B_B����A"���Â�P����a...'�Q�qc8�a�F�{�sdY"lB�'�kȷ��L(&!&#&?�}L�LL3�Xf1f ��|�f�a�E2�2� KK%�M-)V"("k�Q�+��?�x� ����.�����s�� �boa�"���"#"�8G;�+N4�$�=g"�)��.f.-.?(r)C\W�^p��'� �(c)�5�C�+<1/4<f<Q<�<�yxYy�yCx�y"y��t��|�|��>����-��/ p � � �Xt�l|%D#�.(T,�'�(�'l#1/4W��� ���H�H(c)�]'UQ1QW���sb�bb)b�^�"�ģ�"ÅH`%�%B%�$F$aI�`�J�GR�"�U�J�4FZC:B�Z�(tm) ���L��(tm)����ֲٲ�_�"�<��Ý�'W'"���T +X*d+t),+J*�)V*>Q")(tm)*e(u(-)K) (�R�PaR�Q9 ҧ�(c)���zQu^MX�G��3ufu;��� C� �k���q�W4��'� �jÔ�� �(r)Õ�ԡ��(tm)����=�;�' G�"�{�/��_�?k ab�d��P�0ư�p�H�(ͨ�elf|�x�"l�lRa��T�4���(tm)�Y�Y�9�����3 - ?��EK5�4�~+Z+G" "w�'�1�]6���M'�K[��]`-�(r)�]�����(r)�c���+�?8(8�u������������Ӥ��s1/4s� 1/2��K�˪"�k��"��[��wNw�{� ��ţ�ce���"g<U<s=�1/2�1/4'1/4������71/27����է�g���RMY��=�"�g�W��_߿�>@' 0`6P'�0p.H'�(h>X/�$x�jD� ....��� Y �z>t;�5�%��A����L�|%�5�}"z1�*�.����cF'áx��ot*~$�$^MbL�HJ-L�K�M1M9-�N�K��+�7k��4����P�oz_�PFN�L�Yf}MVh��l����o�\�u���d�L�7�!-.7&�����R �)��m�?t?_>�$���G�"�.,>�z��1ì±c����2�N���*�v��1/2�'Ó¥4��Se�e�����7*�+�VV���>(tm)wr�ʿj�"�(c)��yN�y�zf��ٶj��'lMBÍZ-�"���5�q���m��8?U�P�� �����x�|!��|"g�H�qs�E(tm)�g[X[�/�K�->^��<~��J�U�"��\;���z� jKn[ln��p�x�i��ץ��z]���7*o��<�MÓ�1/2}+��JOT�BoP�t�w��m��O�� ��޹}���A���4�u�W��@�AÛ�P�C���ê�m��-u�h�t=�~�=�7�;f<v��" Om�>-w-�x�lj�b�y�� /�'3_b^-z���5���7oZ�T�n3/45~;��������7fr>�>"���6�)�Ý7�����̧�O� ��?��"���_� -�-�,�,m/���7�o}+v+���__=��G����Ý(r)?g�7pe��][V[/�÷��(1"_� i�@-�#5";R;�@C�"��Å"+Â` !�-6'��a� �A�0

  2. Infinite Surds

    --> --> --> We only use the positive values for "a" because we have observed this throughout the pattern. The general statement that represents the values of k for when the expression is an integer is. The reason for which one does not use the other answer to this formula

  1. Infinite Surds. The aim of this folio is to explore the nature of ...

    The next integer value would be equal to 3. It can be worked out using the value for the General Infinite Surd. Find when is equal to 3. The value for where the value of the infinite surd is equal to 1 can also be worked out.

  2. Body Mass Index

    Now the RMSE to the original graph is 0.305792 The tweaked Regression Curve Fit graph and the original graph from data 3. On a new set of axes, draw your model function and the original graph. Comment on any differences.

  1. Math Portfolio type 1 infinite surd

    Thus: Consider another infinite surd: The first term is Calculate the decimal values of the first ten terms of this sequence: Using MS Excel 2008 Terms Values 1 1.847759065 2 1.961570561 3 1.990369453 4 1.997590912 5 1.999397637 6 1.999849404 7 1.999962351 8 1.999990588 9 1.999997647 10 1.999999412 11 1.999999853 12

  2. Infinite surds portfolio - As you can see in the first 10 terms of ...

    you can see that the greater n increases, the closer an gets to the value of about 1.61803. But an never touches that value; that causes the curve to flatten out. It also shows that the rise of the slope is continually decreasing as n increase.

  1. Infinite surds Maths Portifolio

    The general statement represented by k is: an = 2an = 1+ (2an-1)2 = 1+4k The expression above gives the solutions possible, with the answer expressed as an integer, for the possible k- values. Testing the validity of the general statement using other values of k: Ex.

  2. Math IA, Infinity surd

    The value of this infinity surd is not always an integer, that means some numbers make the infinity surd an integer. In order to be an integer, they can't be decimal numbers, or fractions. So the numerator must be a divisor of the denominator to get integer numbers.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work