• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Infinite Surds. As we can see there are ten terms of this sequence where is the general term of the sequence when, is the first term of the sequence.

Extracts from this document...


Math Portfolio

Infinite Surds


a surd is an irrational number that can not be written as a fraction of two integers but can only be expressed using the root sign.

Bellow an example of an infinite surd:


This surd can be turned into a set of particular numbers sequence:












As we can see there are ten terms of this sequence where image09.pngis the general term of the sequence whenimage10.png,image11.png is the first term of the sequence...Etc.

A formula has been defined for image12.pngin terms ofimage09.png:



...read more.


 gets closer to a fixed value.

To investigate more about this fixed value we take this equation image18.png into consideration as n gets bigger.




- 0.13956

















We can figure out from the table above that when n gets larger, the term (an+an+1) gets closer to zero but it never reaches it

So we can come to the conclusion:

When n approaches infinity, lim (an-an+1) →0

An expression can be obtained in the case of the relation between n and an to get the exact value of the infinite surd:

image19.png= x

If we apply formula (1) to this:


x2=1+x   →   image22.png

The equation can be solved using the solution of a quadric equation:


Whereas a=1, b=-1, c=-1

Two solutions for x were obtained:

x=1.618033989 and

...read more.



The negative solution is ignored so:


To find some values of k to make the expression an integer:

We can see that 4k is an even number and 4k+1 is odd, so image46.png is an odd number if 4k+1 is a perfect square hence 1+image46.png is an even number and possible to be divided by 2. As a result if 4k+1 is a perfect square we can obtain an integral number in the result.

For example let k=2:



image48.png← not integer because13 is not a perfect square

Thus we come to the conclusion that only limited values of k can be used to make the result an integer and those values are any value of k can make 4k+1 a perfect square such as k = 2,6,12…etc.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    Y���K{��v^,����]Z�i-��" �o�_S'�+["&�v-�o(tm)F"����; ��"߳�i�&���Z? ^xCRk�'�Q�j-1i0x M �\G{��g��...���x6_^C�4�s��K#�uz�3/4 �2��I��I�7��N����"3/4�/�xfO ]_Eww�...���4 1/4�"[��"�B''y��e��Z-�u�(um6��]�~,-�?\ 1/2�^�H��c� ~e��(tm)�.-k�d1/4��:[�zIl��� �g]b��Aq�Cwm��"J�t�4�e�Þ�\x�[ׯm��[˨�[\x-�Z���o�Ec��}uiyeZ|+��f��� t��O��"�F^C�Z�{e���7�W�1/2]6��_M�-(c)owu���^�cv�!�:-{����޹��O� �}{k(c)]^k^0�m=m|-�[ nK;o�'�...4�-2 �u��}��g"T'(tm)� ;��/�d�c�/�_D[ jVv����'����doq��-��x��-��إ����Fy/(tm)��.��o�|S(r)�f�F"���{8u�...�N�(r)��7...k����V="�e�K×��7�Q�c[-��.��U��|I"�-~#Ô´MR�Þ�S�z���*:f(tm) x���^�K�Y<-) �"�a%IJ�iz5 (c)"�� "/X�7�9A�\jW�i�`���<M�]Óµñ¨­7KM2�i��5��Oo� J��?�o3/45+�1�"��kL��t�r� �F-�1/4=��:...���rZ�o�=��z"s1��,�k]2}HX�&����IQ-��@:��#����"h�M��Q^\�GX�<(c)Cek(c)jn}NmB�� MO��X�FKm:�� �'�@8�ó�|9�hZN��j-�z��{|c2[����J�(c)^˨�u� x���6��k�nt�(tm)�>)m�Õ� ��� �P"�4��I41/2_I:����K�7D��棡Y��uD���Æ{�ͤin�i6-�B-�@σ~|>�cq��w�:@���Û��ײ��5=3T�^��x5�y��."1/4�T������T1��l"��ҭ�ЭV0�!��c�t� ��X��s��à²Y�5)�"E�<;�����N-o�t+�� b"c(�)�-�+�|foh~*���&�|Cj"1/4��D7V�m�--(r)��CO :"V~&���J�\[إ��V��� '�o�� ���k&��.�Çtm!,��,-×Z��|Mi�h�'�Mw4�5�m�E��O���G��K�O�O��y/� �GH�o�x'�]Yx��W'�?\x��E-�VU��1/2_x'��zn�R����"ê0�r� 3/4 |����,<L|f�����1/2:-CP�X���g�:Ä{Qn���Z�i�]9�l�-MM?Î[{�h��( � ( �� ��"8x����_��5��(��G_�2�M�������U��@����'�*���}kS�>1/2sw�;D�е�}F�E1/2��t�.no,"�l�t(c)V -S�Iduy��-$K"�y���4|5���1/4E�g�-�;�b��qÜ")b�|I�+�$-R(tm)���u]V�IY5(tm)5mvvjq3/4���VW`׳_�M ]OPÕµ1/2RD�E��-Z��-�\�P�� �ⷵԭ�ê��GÇ"hW]:�Ú�-��Y�� ��v�M�...1/4�o�I1/4Cka���V��-z-�>1/2�&��w�-��B�H�A�'����k�He�.-Z�c���xo[��*�5m2q(c)�R NK��k�[���O�u�2,K�\Il���íµ"�<�U�M^���VÖ�jK�3�×u�l[��\�"J�f�"��E��Ù�(c)��M� ��j�m�j�F�a(c).�."�iò¶¢k~�q=�dj�����M��Ço1/4=�i�ς�T1�{Q-A���&��Ò��P�>i���oyg����Fk "y���"��.5;?x"�2x"_xb};UÖ´Û?B��<m4�9�4"yc����TzÊn��W*�1/2�Ø5��^���� X|&��"���;G�"�-��޳�i��rx^��\�"����I���7...��(tm)������H�1/4��-0 �-��~^�Y��-)�5�}6��Ú��ޡ���(r)��&��]?\���Ñ���-.�Q�_�2�'�-R�]X���� ���?�"�_ YM�ޭ��t��> i.t9�1/4�-�3/4��Zj��L"�ke(r)�CC_�#`N-���1/4w(��k�}V�v�i(r)\j�x��:��<E�]�uÜf'/�<)��P��eg��� Z�ZIlZ����-�T��V�g �߲ςu(�ψ�;�-�k�""j����\3/4�<5�Bo�t� ���^�m�i��m�� �OU�3/4-�]M��M�~Ï¿ �1w{�}s_3/4��1/47-(tm)u�^I�� �_����T��vhGT�����K�]_\Z��u1��Ù@�/�?�]�_�wOլ�uk�1/2�C֬����&�Hn4?

  2. This portfolio will investigate the patterns and aspects of infinite surds. Technologies, graphs, and ...

    Right now, we know that for the expression to be an integer, "k" has to be the product of any two consecutive integers, and we also know that . Now, we will consider a special case for k. When, the value of the expression should also be infinity.

  1. Math Portfolio type 1 infinite surd

    Let call v2 is the sum of which v is an odd integer. Then: [1] Which is even number, and divided-able by 4. And is an odd number, also an odd number Formula of an odd number: [2] (u is a random integer number)

  2. Infinite Surds Investigation. This graph illustrates the same relationship as was demonstrated in the ...

    a formula on Microsoft Excel: k k 0 1 42 7 2 2 56 8 6 3 72 9 12 4 90 10 20 5 110 11 30 6 132 12 The expression, , is an integer when k is an even, positive integer that will make the square root of 4k+1 a perfect square number.

  1. Arithmetic Sequence Techniques

    = 32 2 = n (a4 + an-3) = 32 2 = n (8) = 32 2 = 8n = 64 Therefore: n = 8 3. If a1 + a2 + a3 = 5, an-2 + an-1 + an = 10 and Sn = 20, what is n?

  2. Stellar Numbers. After establishing the general formula for the triangular numbers, stellar (star) shapes ...

    The first step is to substitute the established values into the three quadratic equations, as shown below: Rn = an2 + bn + c Therefore: quadratic When n = 1, Rn = 1 1 = a(1)2 + b(1) + c 1 = 1a + 1b + c 1 = a

  1. Infinite Summation - In this portfolio, I will determine the general sequence tn with ...

    So it suggests that Sn will be in domain 1 Sn 3 as n approaches . Above, I have been supposing that the greatest value for the sum of infinite sequence Sn is a. And I want to check if it's correct with some different values of a.

  2. Infinite Summation Internal Assessment ...

    This graph displays the line where =1 and =5 and the value of approaches the horizontal asymptote, which is 5. This creates a longer and steeper line compare to the previous graph since it reaches towards the horizontal asymptote of 5 in the same values of .

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work