• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Infinite Surds portfolio

Extracts from this document...

Introduction

Internal Assessment number 1

Nazha AlFaraj

Ms. Leana Ackerman

IB Mathematics SL (year 2)

Sunday, February 19, 2012

Infinite Surds

This following expression is known as an infinite surd.

√1+√1+√1+√1+…

The previous infinite surd can be changed into the following sequence:

a1= √1+√1= 1,414213

a2= √1+√1+√1= 1,553773

a3= √1+√1+√1+√1= 1,598053

a4= √1+√1+√1+√1+√1= 1,611847

a5= √1+√1+√1+√1+√1+√1= 1,616121

a6= √1+√1+√1+√1+√1+√1+√1= 1,617442

a7= √1+√1+√1+√1+√1+√1+√1+√1= 1,617851

a8= √1+√1+√1+√1+√1+√1+√1+√1+√1= 1,617977

a9=√1+√1+√1+√1+√1+√1+√1+√1+√1+√1= 1,618016

a10= √1+√1+√1+√1+√1+√1+√1+√1+√1+√1= 1,618028

The first 10 terms can be represented by:

an+1= √1 + an

If we

...read more.

Middle

image00.png

The data begins to increase by a smaller amount about each consecutive n, suggesting
that the data may be approaching as asymptote. As these values get very large, they willprobably not get much higher than the value of a10, because there already appears to bealmost horizontal trend. The data also suggests that the asymptote is between the value of 6 and seven, although to find the exact value requires a different approach

...read more.

Conclusion

x²= √k+√k+√k…²

x²= k+ √k+√k+√k…

Because we are working with an infinite surd we can deduce that:

x² = k + x

0= k + x – x²

0 = (x+k)(x-k)

The null factor law can be used to portray that any value of k represents an integer.

(x + 4) (x – 4) = 0

→ x² - 4x + 4x – 16 = 0

→ x² - 16 = 0

→ x² = 16

→ x = 4

 As we compare this result to the general statement we provided we can easily establish that our general statement is valid.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Portfolio type 1 infinite surd

    From [1] and [2] we have: Hence the general statement for k is a product of two consecutive integers. Checking the general statement that represents all the values of k for which the expression is an integer using the 1st method.

  2. Infinite Summation - In this portfolio, I will determine the general sequence tn with ...

    I will calculate 3 different sums (T3, T4 and T10) in these 5 cases (8, 9, 10, 11, 12). When a = 1.5 and x = 8: T3 (1.5, 8) = t0 + t1 + t2 = = 9.504583 T4 (1.5, 8)

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    I use the original exponential function to figure out what the amounts should be. I know the y value and the x value. The y value is the left over amount at 6 hours plus 10 for the new dose to figure out the new amount of drug in the bloodstream.

  2. Infinite Surds Investigation. This graph illustrates the same relationship as was demonstrated in the ...

    4k+1 k 4k+1 k 4k+1 k 1 0 64 225 56 4 81 20 256 9 2 100 289 72 16 121 30 324 25 6 144 361 90 36 169 42 400 49 12 196 441 110 Because the expression must be an integer, I will only use the values of 4k+1 that will make k an integer.

  1. Infinite surds portfolio - As you can see in the first 10 terms of ...

    Let us expand our understanding of the exact value of an infinite surd by looking at the following general infinite surd: From graph 1 and graph 2 it is shown that an infinite surd's slope becomes flatter as the number of terms increases.

  2. This portfolio will investigate the patterns and aspects of infinite surds. Technologies, graphs, and ...

    the values of the first ten terms of the sequence accurate to the 9th place after the decimal point. 8 Relation of an and an+1 Once again, as the value of n increases, the value of an seems to increase less.

  1. Math IA, Infinity surd

    b7 � 1.9999623505652 b8 � 1.9999905876192 b9 � 1.9999976469034 b10� 1.9999994117258 Relationship between "n" and as "n" gets larger We can see from this graph, we have got the similar results as above.

  2. Infinite Surds investigation with teacher's comments.

    The graph will then follow a straight horizontal line. In other words, as n approaches infinity, the value of an- an+1 approaches 0. To express in numerical notations, as n??, an=an+1. Use your results to find the exact value for this infinite surd.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work