• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Graphs of Sine Function.

Extracts from this document...


Math Portfolio Assignment                                                                Type 2

Investigating the Graphs of Sine Function

The task of this assignment is to investigate various sine graphs and recognise patterns and generalisations.

Part 1

Look at the graph of y = sin x.

Compare the graphs of y = 2 sin x ; y = 1/3 sin x ; y = 5 sin x.

Investigate other graphs of the type y = A sin x.

How does the shape of the graph vary as A varies?

Express your conjecture in terms of

  1. transformation(s) of the standard curve y = sin x.
  2. characteristic(s) of the wave form.

To do the graphs including graph y = sin x, first I used my TI-83 Graph Calculator to have an idea of how the sketch should look. Then, for the real graph I used in the computer, a program called “Omnigraph” that is ideal for drawing graphs in the Cartesian set of axis, and that could be adjusted to draw trigonometric graphs as well with a suitable scale. This program provides all the facilities needed for them to be clear and accurate.

Graph to show the curve of y = sin x


This is the graph of y = sin x that would be the base curve used to compare all the other curves I would be drawing in this assignment in order to investigate how does different coefficients affect the position and shape of the sine graph. I am asked to compare y = sinx

...read more.


x represents an angle.

The graph below shows three waves where B has been varied in order to investigate how this change affects the wave’s position and shape.

Graph to show y = sin 2 x ; y = sin 1/3 x and y = sin 5 x


In order to investigate what is the effect of B on the y = sin x curve, the graph above has to be compared with the first graph of this assignment, the base graph of y = sin x. It can be noticed that B affects the period of the wave. When varying B, it can be noticed that the wave’s period is B times as short as the base wave’s period. In other words, the inverse of B (1/B) is equal to the base wave talking in period terms.

For example, in the graph of y = sin 2 x shown above, the period is two times as short as the period of the base graph of y = sin x. Now, the period is only 180º which is half of the base or original period.

Another example, where it happens exactly the same thing, is in the graph of y = sin 1/3 x that is also shown above. The period is 1/3 times short, or in other words, 3 times as long as the base wave’s period. In this case, the period is 1080° because 360° * 3 = 1080°.

...read more.


d, then the period will be d times as long as the one in the base graph of y = sin x. C being a fraction is only a very little angle, the movement will be to the same direction, but almost insignificant as the number is so little.

Part 5

How is the graph of y = cos x linked to the graph of y = sin x?

What is the relationship between these functions?

Part 5 is to compare and contrast the graph of sine and cosine.

Graph to show y = sin x and y = cos x


It can be noticed that both waves have the same amplitude and period, but a different position. It seems as if y = sin x has been added 180º to the x, so there has been a translation along the x axis of the vector    180


It doesn’t matter if 180° is negative or positive because it will be the same as the period is 360° and 180° is its half.

To extend this investigation, and prove that it happens in every single graph of sine and cosine because all of them have the same characteristics, I am going to draw a graph showing this.

Graph to show y = - ½ sin 3 (x – 90º) and y = - ½ cos 3 (x –90º)


This graph proves what it was stated before as it can be clearly noticed that both waves have the same shape which includes amplitude and period, but the only that changes is position by 180º, or in other words, by a translation of  180


NAME        Page                 09/05/2007

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    @"Â-HFB��P8Q�I� Z" N B�DQ$&!�D(<h�d$8A�...E'�"�� %''�"NEb< @"Â-HFB��P8Q�I� Z" N B�DQ$&!�D(<h�d$8A�...E'�"�� %''�"NEb< @"Â-HFB��P8Q�I� Z" N B�DQ$&!�D(<h�d$8A�...E'�"�� %''�"NEb< @"Â-HFB��P8Q�I� Z" N B(c)���Ü�'...(c)! R�P�V��"'"t���å�(r)wy*@��''��N'�u��a���m۶��vssB�2l(]��...���/^1/4���6��3/4~%)7!`�0�>��bvvv�ڵ���{�ΝfÍ���XXX�l��"xF�,����ѣ����k���/O�<Ù¹s�P>,, 3�_�"�PD(�)�Q�F/1/2�'1/21/2=��){���<�(�_�"�PD(�)�"{���(��~���W�r�F�|(�(c)�F��--�����(c)S���� _y�M�Z��^xRð±³³"�0<)��T�%�F��>{����"j��p�("�"-�D2� @"Â�HLB� �Px��Hp� '�"1 - B�AK$#!� D(�(��[email protected]�... -'�"'�p�("�"-�D2� @"Â�HLB� �Px��Hp� '�"1 - B�AK$#!� D(�(��[email protected]�... -'�"'PH#(����f(tm)(r)��v�.6}��'� [email protected]"HApl<;88�_"�Æ��3/4]���µ$H��[�n�"�]�&�[email protected]@����P�6�*(� L'(tm)(tm)y���3g�\�r��"�����Ô-"*E�hdBN�brrr�8(.1/4xx+�_Q��ťk�(r)�۷G ��j�+�9}�4� ��F�p2�@/4""W��D�"���)\&��]�)p1jCN" ���-[������F�(r)(c)�(tm)...�6�899Í;���1/4(r)(r)(r)x�1��80��1/2*�$��Bsx� 8p��R�Fu������|�2�!3/48~�8� � ����@π�0y�A7 4�/\� ��<� � �( j*�;D(�cUqN1/4�x[6oÞ� ��q<{�l�-=z৲�bҤ�7&�K�--� o> �0!�� {��9q��2hZx�Asx�(tm)pG�"���B$0�W �^1/2z �[6'=�B�E '�����ڵ #� F*.��0C�Ny���(r)

  2. Investigating the Graphs of Sine Functions.

    (b) characteristics of y= sin x: the curve is symmetric with the origin, it is an even function, and has infinite intercepts at multiples of , as well as infinite maximum and minimum points at - and .

  1. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    0.2601229487 8 0.1950922116 9 0.0867076496 10 0.017341529 I can also check for reasonability of these values because I know the fact that they must add up to 1. Therefore I will find the sum of the values of the distributions.

  2. Analysis of Functions. The factors of decreasing and decreasing intervals (in the y ...

    Because there are not turning points the relative max and min don't exist in this type of function. As we can see in the graphs above, there is a discontinuity when the exponent of the function is negative; the type of discontinuity that is present is the asymptote.

  1. The purpose of this paper is to investigate an infinite summation patter where Ln(a) ...

    7.988814 8.000000 0.008671 7.997485 9.000000 0.002003 7.999488 10.000000 0.000417 7.999905 As n � +?, Sn � +8 There is a horizontal asymptote as n approaches positive infinite (?). As n approaches positive infinite then Sn will approach positive eight. Sn approaches a horizontal asymptote when y=8.

  2. Music and Maths Investigation. Sine waves and harmony on the piano.

    They are given the symbols of â¯, which means sharp and â­, which means flat. Here is an image with the keyboard and its representational letters: Image Source: http://www.piano-keyboard-guide.com/piano-keyboard-layout.html Each semitone, or note, will produce a sound that has its own frequency.

  1. This assignments purpose is to investigate how translation and enlargement of data affects statistical ...

    The results shown below: The mean and standard deviation of multiplying each height by 0.2 would be 30.58333333 as the mean, and 3.417463322 as the standard deviation. If you were to multiply every value by a constant, then the mean will also be multiplied by that same constant.

  2. Investigating transformations of quadratic graphs

    y = (x ? 2)2 c. y = (x + 3)2 What do you notice? Can you generalize? The sketches above are graphs of quadratic functions and therefore parabolas. Although the shapes of all three graphs are the same, the graphs? positions differ from one another.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work