• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

LAcsap fractions - it is clear that in order to obtain a general statement for the pattern, two different statements will be needed

Extracts from this document...

Introduction

Jonghyun Choe

March 25 2011

Math IB SL

Internal Assessment – LASCAP’S Fraction

The goal of this task is to consider a set of fractions which are presented in a symmetrical, recurring sequence, and to find a general statement for the pattern.

The presented pattern is:

Row 1

                                                                                        1          1Row 2

                                                                                    1       32       1Row 3

                                                                               1       64       64       1Row 4

                                                                          1      107      106      107      1Row 5

                                                                     1      1511      159      159      1511     1

Step 1: This pattern is known as Lascap’s Fractions. En(r) will be used to represent the values involved in the pattern. r represents the element number, starting at r=0, and n represents the row number starting at n=1. So for instance,   E52=159, the second element on the fifth row. Additionally,  N will represent the value of the numerator and D value of the denominator.

        To begin with, it is clear that in order to obtain a general statement for the pattern, two different statements will be needed to combine to form one final statement. This means that there will be two different statements, one that illustrates the numerators and another the denominators, which will be come together to find the general statement. To start the initial pattern, the pattern is split into two different patterns; one demonstrating the numerators and another denominators.

Step 2:

...read more.

Middle

=21

7th row numerator:                                 N(7)=0.5×72+0.5×7

N(7)=0.5×49+3.5

N(7)=28

Consequently, these are the values of numerators up to the 7th row.

1        1

3      3      3

6     6     6     6

10  10  10  10  10

15  15  15  15  15  15

21  21  21  21  21  21  21

28  28  28  28  28  28  28  28

Using the method in step 3 and equation 1 in figure 1, it is evident that the numerator in the 6th row is 21. Since both equations have brought same values, it can be concluded that equation 1 is a valid statement that demonstrates the pattern of the numerator. Equation 1 will be used later also, in order to form a general statement of the pattern of whole LACSAP Fractions.

Step 4: When examining the denominators in the LASCAP’S Fractions, their values are the highest in the beginning, decreases, and then increases again. For example, the denominators in row 5 are;  15  11  9  9  11  15.  From this pattern, we can easily see that the equation for finding the denominator would be in a parabola form.

Element

0

1

2

3

4

5

Denominator

15

11

9

9

11

15

The relationship between the denominator and the element number is graphically plotted and a quadratic fit determined, using loggerpro.

image01.png

Figure 2: This parabola describes the relationship between the denominator and element number.

The equation for the fit is : D = r2  - nr+r0 . In this equation, r refers to the element number starting from 0, and r0

...read more.

Conclusion

For example, E7 (3) = 2816=  0.5n2+0.5n r2  - nr+r0  = 0.5 × (7)2+0.5 × (7) 32  - 7×3+28  = 2816 . Here, it is clear that the formula is applicable.

In order to make sure that the general statement is valid, finding the additional rows of the recurring sequence of fractions by using the general statement above would be useful. Here, I chose to settle on 2 additional rows which are the 8th and 9th rows in the pattern.

8th row numerator:                                      N(8)=0.5×82+0.5×8

N(8)=0.5×64+4

N8=36

9th row numerator:                                      N(9)=0.5×92+0.5×9

N(9)=0.5×81+4.5

N9=45

8th row second and eighth denominator:  D = 12  - 8 ×1+36

                                                                          D = 1- 8+36

                                                                          D = 29

8th row third and seventh denominator:  D = 22  - 8 ×2+36

                                                                         D = 4- 16+36

                                                                         D = 24

8th row fourth and sixth denominator:  D = 32  - 8 ×3+36

                                                                      D = 9- 24+36

                                                                      D = 21

8th row fifth denominator:  D = 42  - 8 ×4+36

                                                  D   = 16- 24+36

                                                  D = 28

9th row second and ninth denominator:  D = 12  - 9 ×1+45

                                                                         D = 1- 9+45

                                                                         D = 37

9th row third and eighth denominator:  D = 22  - 9 ×2+45

                                                                       D = 4- 18+45

                                                                        D = 31

9th row fourth and seventh denominator:  D = 32  - 9 ×3+45

                                                                            D = 9- 27+45

                                                                            D = 27

9th row fifth and sixth denominator:       D = 42  - 9 ×4+45

                                                                       D = 16- 36+45

                                                                        D = 25

Thus, these are the fractions up to the 9th row.

1        1

1      32     1

1      6464     1

1      107 106 107   1

1        1511   159   159    1511    1

1     2116    2113    2112     2113     2116    1

1      2822    2818    2816    2816    2818     28221

                                     1       3629    3624    3621    3628     3621     3624     3629     1

                                  1       4537    4531    4527    4525     4525     4527     4531    4537     1

This shows that the general statement for the symmetrical, recurring sequence of fractions is valid and will continue to work.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ~"Yx[�Gÿ��~,x>�U�p����n��j'�-�����G^�C�~ �(c)�Ӵ��M�u+��0�...�F�Y�5�u�>��-�aKÙ�1h�,<Ei�xQt-��=��ol�v�{�Z��l/�1/4My�g��_i�إ3/4�wU1/4�3� �K -�������G��W�1/4]�?...�%"�1/4�"��X}T [�jV��5��gÄ�s=�...|I�j���P��"�.>��7�x���ï�*�F��� 3/4'|gֵ�x�K����|&�lÚ¦"(r)��R� =��>#x���--�$�-��>/ �kZſ���R�-�?�N...(c)[�6�a�1/4��,�=�-�|:��|'������g��7Fo�jP�^�á^#�;�^]^���?_x������Pb�U�(x����?��+�>1i>5��/��-�#� ^|+�M3/4��L�-4?x�C�/�&��h�� "��1/4In4 J��xsM���v�I�X��>� � ( � ( � ( � ( � ( �?-��;�P���8o��t�(������O�6Û����_�W�...ptP ?����~�7...�//4�?xY�.��ͨX�kuΝ=����-��y����D" m~J�~ÿ3/4)|8�3� ~�_ �'�;�O�G�>x\��1/4Ce��1�~�7���'â±3/4�u���u"�Ztv6�j>"���w�1/2` �� g�#Y���v��mn�]S�5O � ��u��k1/2FO-K5�.�(y�7��C1/4-(1/2����x�+�X�y��Å3�u���"��;�"tmZ��"u?���Q�O�(r)|l������{}n��zC�5��;_��YY\[h^�m�E� ��� �_ �`o�6��|R�...�-�"�|h��3/4Ь1/4Q�"[���Ŀ�_n��NKOϧk�����<�o�].m+Z��< {-�i�XK����-��|y�� ~�-��-1/2�x�W����k�[_�_|M����>��R��g�1/4E�x�E�S���[�;O'�Ä�...� -�kĺ"]x"^�"�A �ce�^���8�1/27��>"����J] /|;�x�M1/4�R�x-�:��,��� �� g� F�[D�����M%3/4���'�4c�L�|K�/"(c)����- ���D�"[�w�h�|?"jS������e���L�H����7���k�� �~|V�W�-�Z����,�1/4*����#B�uk�x�� ��t�k �_#h3/4���5���U�muWZ��F��N |+���ÿt�V�Ŀ> | �-���(c)�hv�m~ ��<K�Ķ�$ �;���/~��6���

  2. Salida del sol en NY

    as� llevar un seguimiento, o en otro caso resolver el modelo y llegar a obtener la media en la hora que sale el sol todos los d�as, o mejor tomar la hora menor en la que sale el sol, por lo tanto si sale a esa hora siempre podr� anticiparse y salir a la hora adecuada del alba.

  1. Continued Fractions

    Once reaches 23, will converge to a sustained value of 1.618033989. This value will remain constant as long as 23 The same trend is brought up by the graph of and . As the value of rises, will oscillate until reaches 25.

  2. Lacsap's Fractions : Internal Assessment

    Once in EDIT, two empty columns will appear. Input the row number, n, in the first column, and the numerator in respect with the row number in the second column, as shown below: Once this is done, exit the screen, and press STAT again and scroll right to CALC.

  1. MATH Lacsap's Fractions IA

    5 15 Graph 1: Row number against numerator with a linear trendline Graph 2: Row number against numerator with an exponential trendline Graph 3: Row number against numerator with a polynomial trendline Out of the three trendlines used to represent data from Table 2, the polynomial function is the best-fit model.

  2. Parabola investigation. The property that was investigated was the relationship between the parabola and ...

    there is a decrease of 0.06 in the value of D ?. So a formula can be made for the value of D. This is shown below. Take the graph 1.17x 2 ? 6x + 11 for example. 1. First find the difference between the value of a and 1.12.

  1. Investigating Slopes Assessment

    Part 1 1st Case For the first case of part 1 of investigation 3, I decided to chose the function f(x)=g(x)±h(x). However, In this case, I will allow the function to be f(x)=g(x)+h(x) and then, in the second case, analyse the function f(x)=g(x)-h(x).

  2. LACSAP Fractions. The aim of this portfolio is to discover an equation which ...

    Numerator: = 6(+ ) = 21 1st denominator: = (6) × (6+1) - 1(6-1) = 21 – 5 = 16 2nd denominator: = (6)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work