• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Lacsap's Fraction Math Portfolio

Extracts from this document...


Lacsap’s Fraction

Thomas Ullrich

Internal Assessment Type 1

Math SL


In this IA Type 1 I’ll have to find patterns in a set of numbers, which are presented in a symmetrical pattern.

Step 1: Finding the numerator of the 6th row

At first, I had a look at the first 4 numerator, which are 3, 6, 10, 15. The first step between 6 and 3 is 3 and increases by 1 in each following row. Therefore we can say that the numerator in the 6th row is 21 (and the 7th is 28.)

Figure 1 Relation between the numerator and n

As you can see the numerator develops not linearly, but in some way exponentially.


Figure 2 Lacsap's Triangle

Step 2:

The next step is about finding the complete 6th and 7th row.  For the numerator, I found this specific pattern that describes it. As we see in our first graph, the numerator in row number 6 is 21 and in row number 7 it is 28.

Now it is about finding a pattern for the denominator.image01.png

To show the specific pattern for the denominator I marked the sequences which are responsible for the characteristical features of the Pascal’s triangle.

The sequences are:

2  (+2)  4 (+3)  7 (+4)  11

4  (+2)  6 (+3)  9

7  (+2)  9

Figure 4 Denominator pattern

As we can see in Figure 3, the denominator increases by 1 starting with a step of 2. Following this rule, the denominators are:


...read more.


To find b, we put a in equation IV:




To find our last unknown variable c, we put a and b in I:




Now after we found all three unknown variables, we put them in our original, general quadratic equation.



To check, if our expression is correct, we check put in a row number and check if the associated numerator is correct:

Validation test 1:



  • Numerator=6

Validation test 2:



  • Numerator=21

Validation test 3:



  • Numerator=28

Step 4:

The next step is , to find a general expression for the denominator as a function of row number n and element number r.


First of all I’m going to show how the denominator for r=1 (the red circled numbers).

Figure 6 is showing the relation between the denominator and n

To find the general expression for the denominator, we have to use the general, quadratic approach again:


We need three equations to find all three variables. Therefore we put in the numbers from row 3, 4 and 5 and their associated denominators. Remember that we for now look at the red circled numbers

Quadratic equation for r=1




...read more.


So in line n, r=[0;n]

Step 7:

I will shortly explain, how I arrived at my general statement.

At first, I had a look at the given set of number, where I found patterns between the numerators and the row numbers and also for the denominator and the row numbers.

With that information I came up with the approach using the general quadratic equation. For the numerator it wasn’t too difficult because I only had to solve 3 different equations in order to get the three unknown variables for Numerator (n) =an²+bn+c.

For the denominator, it was a bit trickier. The first step was similar. Using the denominators values to solve Denominator=an²+bn+c. After solving those three equations, I noticed that the first part of the equation looked similar to the general numerator expression. So I tried to make it the same by adding +0,5n-0,5n in order to get 0.5n²+0,5n in each equation. After that was done, I saw that the last part of the equation was always r²-rn.

After finding the formula for the numerator and denominator, finding the general statement for En(r) wasn’t much of a big deal. All I had to do was dividing the numerator by the denominator.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    _a�M���""+\��hY�0�2 o~�-v�...?�;�� �-l��t��=�t�@tr^��0�L�F#Z�S���1/2<�k��;"�zqy�2�P�L×´0 n����Sw�Ml�u� '���"�:�b S5S���Q(r)��"�\���R#(c)(r)pz��0-ha-U ��)��3��z-� Ö3gI?G���8���C3,P��4"tN-ghF�Ð�γ80"��"�B�L%L�S$l'�.���]� �� �@1/28=qq'AC�+OC G-�� -�...K��(tm)}"�e����xHYPl�-b�Ê�>�}"nt�/�8 =D 8�C1/2>=�����-��Dfk�-"�1eOFp ��"���B�|U�f�9�&`Fk �4��z.�L~$�Q[["�N�&*0A��\S+VP�� .i]O�<(tm)��mA�Up4��)���U�!p 4#����-_άi��SU[��)�scWQ�EpY�=&�%y@6^�*�"=B��{v��E�ÎG"ï±/(6p�X�B� � \�rT-�,��!�;]�J"Q���U�P\H�h Î�][\��UkÕH"`< �4V�1/2�"O:>h.��S)# �� P -Ç"EhÞ_0=" ��wMl�1/4���Z�dqLÓ¯_?������̡1,�sr��zu�U��i�Q�ض�"Q\` �*X��HjA ( ��rT4!:(r)��<=�Þ� �4 ��p�Kì¤ï¿½ï¿½ï¿½ï¿½k>�1/4��KR�pM�Tvg���R"&q��Õ�'.@+++��0���DYV�)"<��$Λ ï¿½zq�ä¨ï¿½z ���G�΢ W�P� T��1�j�� ~�8<Zh\ �ȱ g�1/4}:��...�Cq'T`#z�Y���K�t�,x�- / �Ϭi .t"�Q�I��� �-'l�����Q�� -L["~�%8�r� o��A ���"^�"`�kÔ¨Q,���Å���[Z��q;)iR�A� '�Y���s�W1/2Xv��G��.�(�u:(c)�0G"�-[Æs�w�����g��qg"_Q';'U...v����|fJ?��8 -[�w�yG@Ö��)b��...���Ì=��#�<bT��I"�DG��p-�� ��%�&�bÅ�(X��C="*(tm)�O?��o.Ñp�I_j9�"���\�Ù�%` ��d�qq���Ø����1/4lÙ²Y�f�2��A�@�...^8��"�;�1/43f��1/2[�f�G}� �(tm)\S�r��C�_z��"wOg�-���"�3/4z��á§z*��d�Ĵj'e���/�

  2. Math Studies I.A

    $39,500 (2007 est.) $38,300 (2006 est.) note: data are in 2008 US dollars Azerbaijan $9,000 (2008 est.) $8,100 (2007 est.) $6,600 (2006 est.) note: data are in 2008 US dollars Bahamas, The $28,600 (2008 est.) $28,300 (2007 est.) $27,700 (2006 est.)

  1. Math Portfolio Type II Gold Medal heights

    However the modelled function might prove more accurate in the future as the logistic functions gradient continues to decrease whereas the exponential function's slope will increase. Using the two equations one is able to estimate what the winning height could have been if the Olympics happened in 1940 and 1944.

  2. Salida del sol en NY

    considerar los cambios que tendr�n en los horarios dependiendo que direcci�n tomemos, por ejemplo se nos pide que nos calculemos que pasa si nos trasladamos 1000 Km al norte, al sur y al oeste respectivamente, para esto es necesario basarse en datos aproximados de acuerdo al espacio geogr�fico recorrido.

  1. IB Math IA- evaluating definite integrals

    FnInt (3sin(2x), x, -1, B) B Y (A=1) Y (A=2) Y (A=3) Y (A= ?/2) 0 -2.12 -2.48 -0.06 -3 ?/2 0.876 0.520 2.94 0 ?/3 0.126 -0.23 2.19 -0.75 ?/4 -0.624 -0.98 1.44 -1.5 ?/6 -1.37 -1.73 0.69 -2.25 ?/12 -1.92 -2.28 0.141 -2.80 -?/2 0.876 0.520 2.94

  2. Math IA - Logan's Logo

    3.15+-2.8=0.35. Now, having graphed onto the axes, I can visually determine the horizontal shift of my graph. By extending the data points I plotted to meet the center line of the curve, I was able to estimate how many units leftwards my graph had shifted.

  1. Math Portfolio: trigonometry investigation (circle trig)

    The frequency is approximately 0.1592 when expressed to radian. Therefore, the conjecture will be the value of ?, gives the amplitude, maxima and minima in the graph, thus setting the range of - ?? . y=sinb? and y=cosb? graphs for different values of b using the domains of -???

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    As discussed above, while a linear function works well as a analytical approach; using technology to determine a best-fit would be better approach to discover a better fit than the original linear equation. Let us explore an alternative method of finding a function; this time using regression.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work