Mathematics

Portfolio Type 2

LOGAN’S LOGO

January 2009

Maria Stormo

This diagram shows a rectangle which is divided into three regions by two curves. The shaded region between the two curves is a logo which can be represented by two mathematical functions. The rectangle is 6.5cm by 6.1cm with a 0.5mm thick frame and the lines of the curves are 0.5mm thick. The aim for this portfolio is to manage to find mathematical functions to represent the logo, be able to modify the logo so that it fits other types of dimensions, and in the end to be able to calculate the area fraction of the logo on the business card. What we can ask ourselves is if the area fraction of the business card will be of the same value as the original logo.

1. Developing mathematical functions for the logo

1.1. Finding the coordinates

The problem is to find the two functions that model these two curves. One type of function that can represent these curves might be sine functions. To check this thesis out, it is first necessary to know the coordinates of the curves.

A parameter is a quantity that defines characteristics of functions. There are several parameters relevant to this portfolio:

  • The thickness of the lines: 0.5 mm
  • The length of the logo: 6.5 cm
  • The height of the logo: 6.1 cm
  • The type of function used

A variable is a value that may vary. There are several variables relevant to this portfolio:

  • The x-value
  • The measurements, as others may have measured differently
  • The size of the card

It is hard to find the coordinates of curves at a logo, so what I did was that I glued a millimetre paper to the logo. As the lines of the curves are 0.5mm thick, the most accurate way to find the coordinates were to find the coordinates in the middle of the line, if I had found the coordinates either at the top or the bottom of the line, the coordinates would not have represented the curves correctly. The points measured are not equally distributed; they are measured according to which ones were most accurate according to the millimetre paper.  

Join now!

Coordinates for the lower curve:                                Coordinates for the upper curve:

        

                

1.2. Sine regression

After listing these coordinates into the list function on my GDC, a Texas TI-84 Plus, I can use the sine regression to find an appropriate function for the points.

The lower curve (g(x)):

y = a ∙ sin ( bx + c ) + d

a = 1.668240274

b = 0.8100728241

c = –2.216031762

d = 1.96525663

g(x) = 1.668240274 sin ( 0.8100728241 x – 2.216031762 ) + ...

This is a preview of the whole essay