• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26

Math IA - Logan's Logo

Extracts from this document...

Introduction

IBO INTERNAL ASSESMENT LOGAN'S LOGO MATHEMATICS SL TYPE II INTRODUCTION Logan has designed the logo at the right. The diagram shows a square which is divided into three regions by two curves. The logo is the shaded region between the two curves. He wishes to find mathematical functions that model these curves. In order to find these functions, we will need to overlay the logo on graph paper, so we can interpret data points to be able to plot them. Take note that in the "modeling the data" in the next section, the logo was not resized, but set as transparent so that data points could be read. Also, take into consideration the uncertainty of the measurements (± 0.25 units). For modeling purposes, the uncertainties are not included in the data calculations; however this should not be overlooked. MODELING THE DATA NOTE: Data tables and their graphs are included on the next page. TOP CURVE : In order to find a function to model the top curve, there are various methods that we can use. One is to overlay the logo onto a set of axes and estimate points for the function. Once we obtain these points, we can then plot them onto a new set of axes. Judging from the logo itself, at first glance it appears that a sine function would fit the data. The sine function would have to undergo a series of transformations to eventually fit the curve. Using the axes and logo depicted above, I estimated 13 points for and recorded them in the data table below: NOTE: Due to the limited precision of the graph, I was only able to estimate to the nearest tenth. Maximum and minimum points have been shaded. X Y -2.5 -1.0 -2.0 -2.5 -1.6 -2.8 -1.0 -2.4 -0.5 -1.3 0.0 0.0 0.5 1.5 1.0 2.6 1.5 3.4 1.8 3.5 2.0 3.4 2.5 2.5 2.6 1.9 After determining these data points, I then plotted them onto a separate set of axes: From here, it is obvious that a sine function would fit the data. ...read more.

Middle

Now that we've found the highest and lowest points of the sine curve, we must divide the difference between the two y-values (subtracting the highest point on the y-axis from the lowest will give us the actual height of the curve) by 2: The value of a, 2.2 units, is the vertical dilation of the curve because it reflects the stretch factor compared to the original sine curve (defined as ), where the amplitude is 1 unit. However, 2.2 is not the final value of a. It can be seen from the above graph that the curve begins with a negative slope (it goes downwards first and then upwards). This indicates to us that we must place a negative sign before the a value, so the curve will begin with a negative slope. Thus, the final value of a=-2.2. TO FIND b: As stated above, changing the variable b will affect the horizontal dilation of the sine curve. This dilation occurs parallel to the x-axis, which means that the period of the graph is altered. A period is defined as the length it takes for the curve to start repeating itself. Thus in order to determine the variable b's value, we first need to look at the period of the graph. For the original sine curve, the period is, or 360º . Thus the formula that relates the value of b to the period ? of the dilated function is given by: , Since the graph of will show b cycles in 2? radians. From this equation we see that as the value of b is increased (the horizontal dilation of the curve is greater), the period becomes smaller. We know this because b is the denominator, meaning that increasing its value would decrease the overall fraction's value. To find ?, it was easier to find half of the period first, and then double it to ensure accuracy. ...read more.

Conclusion

- b 3. Horizontal shift- c 4. Vertical shift- d Numbers 1 and 4 both stretch or shrink the curve parallel to the x-axis, which means that the amplitude a and vertical shift d will only be affected by the manipulated range (factor of or). On the other hand, numbers 2 and 3, the horizontal dilation and shift, will stretch or shrink the curve parallel to the y-axis. Again, this means that they will only be affected by the manipulated domain (factor ofor). Now we are able to apply the corresponding shrink factors to their appropriate variables in order to obtain a new curve for Logan's business cards. TOP CURVE The final equation for the top curve is given by the following equation: with a period of 6.3. Thus we must make the following changes to each of the variables. For a, the amplitude or vertical dilation factor: For b, the horizontal dilation factor: For c, the horizontal shift factor: For d, the vertical shift factor: Thus the final equation for the logo with dimensions compatible with that of a standard business card is: with parameters of: and. The graph of the manipulated curve is shown below, on a 9cm × 5cm business card. BOTTOM CURVE The final equation for the top curve is given by the following equation: with a period of 6.0. Thus we must make the following changes to each of the variables. For a, the amplitude or vertical dilation factor: For b, the horizontal dilation factor: For c, the horizontal shift factor: For d, the vertical shift factor: Thus the final equation for the logo with dimensions compatible with that of a standard business card is: with parameters of: and. The graph of the manipulated curve is shown on the next page, on a 9cm × 5cm business card. The final logo on the business card is shown below. Note that the dimensions are in units which, shown through the calculations above, have been converted to ensure they match the ratio and proportion of a standard business card. ?? ?? ?? ?? 26 | Page ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Logan's logo

    This graph can be seen below Graph 2: Points of Graph 1 connected It should be noted that the curve is not very smooth but rather rigid this is because these are not the exact points of the logo these are the points observed using a ruler, making the values

  2. Math Studies I.A

    Palau 8,100 70.71 572751 65610000 4999.9041 Papua New Guinea 2,200 65.66 144452 4840000 4311.2356 Peru 8,400 70.14 589176 70560000 4919.6196 Poland 17,300 75.6 1307880 299290000 5715.36 Puerto Rico 17,800 78.54 1398012 316840000 6168.5316 Romania 12,200 71.91 877302 148840000 5171.0481 Rwanda 900 46.2 41580 810000 2134.44 Saint Kitts and Nevis 19,700

  1. Math Studies - IA

    The margin of a team's win is suitable. This will be measured in how many times greater a victory is. So to compare a European Ryder Cup win of 181/2 - 91/2 (number of points) with a US major win the same year of 72.5 - 73 (mean number of strokes.

  2. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    m m m And the volume of the cuboid: ? These dimensions produce the cuboid with the maximum volume under the graph (also shown in Fig 2 below). Fig 3. Dimensions of cuboid with maximum volume when (front view) Varying Height of Roof: After determining the dimensions of the maximum

  1. IB Math IA- evaluating definite integrals

    Trials: We know the derivative must be a negative parabola because it is concave down and because it forms a parabola there has to be a squared power in the function. 5-4x (blue) 5-4x2(green) -4x2(turquoise) -4x2+3(black) -4/2x2+3(red) The equation 5b-2b2 is the best function.

  2. Mathematics Higher Level Internal Assessment Investigating the Sin Curve

    what the graphs would look like, and how they would have been translated from the original curve. This can be done by just identifying the different variables and . We will predict the graphs of , and and then we will test our predictions by graphing these equations.

  1. Population trends. The aim of this investigation is to find out more about different ...

    The graph above represents the data given for the years 1983 to 2008, each of the axes is labeled with years being time or more specifically the and the population is the . Firstly I will put my model to the test to see if the new data is inside a range of my developed model .

  2. MATH Lacsap's Fractions IA

    The numerators calculated using the statement can be reinforced using Figure 1, Pascalâs triangle. As for the denominator, because of the symmetry observed and the pattern of the difference between the numerator and denominator is still existent. This proves that the general statement is valid and will continue to work.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work