• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19

Math IA - Matrix Binomials

Extracts from this document...

Introduction

IBO INTERNAL ASSESSMENT

Matrix Binomials

Mathematics SL Type I

Katie Xie

Mrs. Cheng

9/23/2008


Let X=image07.pngand Y=image08.png. Calculate X2, X3, X4; Y2, Y3, Y4.

X2=X ● X

X2=image07.pngimage07.png

X2=image104.png

X2=image24.png

X3=X2 ● X

(Matrix multiplication is associative)

X3=image24.pngimage07.png

X3=image122.png

X3=image09.png

X4=X3 ● X

X4=image09.pngimage07.png

X4=image19.png

X4=image12.png

Y2=Y ● Y

Y2=image08.pngimage08.png

Y2=image40.png

Y2=image37.png

Y3=Y2 ● Y

(Matrix multiplication is associative)

Y3=image37.pngimage08.png

Y3=image56.png

Y3=image58.png

Y4=Y3 ● Y

Y4=image58.pngimage08.png

Y4=image73.png

Y4=image39.png

As we can see, a general trend emerges as we increase the power of the matrix. There is a definite relationship between the power of the matrix and the end product (entries in the matrix). We observe that when X is to the power of 2, i.e. X2, the matrix’s entries are all 2’s; when X3, the entries are all 4’s; when X 4, the entries are all 8’s.

For the Y matrix, a similar pattern emerges, except in this case, we must note the negative signs. However, these two negative numbers always occupy the same position in the matrix when the power is increased.

Through consideration of the integer powers of X and Y, we can now find expressions for Xn, Yn, (X+Y)n.

We observe that the elements of the matrices appear to form a geometric sequence; thus we can use the general equation for a geometric sequence to determine the expressions for Xn, Yn, (X+Y)n:

image87.png, where Un=a specific term

                                    a=first term

...read more.

Middle

When a=2, i.e. A2=(2X)2:

A2=A●A

=image24.pngimage24.png

=image123.png

=image12.png

When a=2, i.e. A3=(2X)3:

A3=A2●A

=image12.pngimage24.png

=image124.png

=image125.png

When a=2, i.e. A4=(2X)4:

A4=A3●A

=image125.pngimage24.png

=image126.png

=image15.png

When a=-2, i.e. A= -2X:

A= -2image07.pngimage05.png

A=image10.png

When a= -2, i.e. A2=(-2X)2:

A2=A●A

=image10.pngimage10.png

=image11.png

=image12.png

When a= -2, i.e. A3=(-2X)3:

A3=A2●A

=image12.pngimage10.png

=

=image13.png

When a= -2, i.e. A4=(-2X)4:

A4=A3●A

=image13.pngimage10.png

=image14.png

=image15.png

When a=10, i.e. A=10X:

A=10image07.pngimage05.png

A=image16.png

When a=10, i.e. A2=(10X)2:

A2=A●A

=image16.pngimage16.png

=image17.png

=image18.png

When a=10, i.e. A3=(10X)3:

A3=A2●A

=image18.pngimage16.png

=image20.png

=image21.png

When a=10, i.e. A4=(10X)4:

A4=A3●A

=image21.pngimage16.png

=image22.png

=image23.png

Through consideration of the integer powers of A (2, -2, and 10), we can observe a pattern and find an expression for An.

For An when a=2:

When n=1, 2, 3, 4, … (integer powers increase), then the corresponding elements of each matrix are:

             1, 4, 16, 64, … These terms represent the pattern between the scalar values multiplied to

                                      A=aX where a=2 and hence A=image24.png to achieve an end product of An.

Thus, we can now deduce the geometric sequence of these scalar values using the general equation listed above:

image03.pngimage06.png

In the sequence {1, 4, 16, 64}, f=1

                                                   r=4

image25.png

image26.png

image27.png

Here, we can express r in terms of a (a=2):

r=4

4=2●2

image28.pngr=2a

We can also express image27.pngin terms of a:

image27.png

image29.png

For An when a= -2:

When n=1, 2, 3, 4, … (integer powers increase)

...read more.

Conclusion

(A+B)3=(A+B)2(A+B)

(A+B)3=image68.png

=image67.pngimage69.png

= image67.png(A+B)

=image70.png

But AB and BA both equal 0, as:

A=aX

=aimage07.png

=image71.png

B=bY

=bimage08.png

=image72.png

So AB=image71.pngimage72.png

=image74.png

=image75.png

=0

BA=image72.pngimage71.png

=image76.png

=image75.png

=0

We re-write image70.pngas image77.png

=image78.png

=image79.png

Where n=4, i.e. (A+B)4:

(A+B)4=( A+B)( A+B)( A+B)( A+B)

(A+B)4=( A+B)3(A+B)

(A+B) 4=image80.png(A+B)

=image81.png

=image82.png

=image83.png

=A4+B4

We can now find an expression for (A+B)n through consideration of the integer powers of (A+B) and observing the pattern that has emerged.

(A+B)=A+B

(A+B)2=A2+B2

(A+B)3=A3+B3

(A+B)4=A4+B4, and so on.

Thus, we can conclude that (A+B)n=An+Bn, which can be rewritten as follows (to be expressed in terms of X and Y):

(A+B)n=An+Bn

=(aX)n+(bY)n

=anXn+bn+Yn

Now we consider M=image84.png, where M=A+B:

M=A+B

image85.png= aX+bY

image85.png=image86.png+image88.png

image85.png=image85.png

image89.png

We can also prove that M2=A2+B2 (which we can use to later calculate M3=A3+B3, M4=A4+B4 to find a general statement for Mn, in terms of aX and bY):

M2=A2+B2

image84.pngimage84.png=(aX)2+(bY)2

image90.png=image86.pngimage86.png+image88.pngimage88.png

image91.png=image92.png+image93.png

image94.png=image95.png+image96.png

image94.png=image94.png

image97.png

Now, tracing the pattern in order to find the expression for Mn, we see that:

M=A+B=image85.png

M2=A2+B2=image94.png

M3=A3+B3= image98.png

M4=A4+B4=image99.png

Expressing Mn in terms of aX and bY (=A and B respectively), we have arrived at the general statement:

Mn=(aX)n + (bY)n, which we can also express as

Mn=anXn + bnYn.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �Âß��+\B]5�HnS�v�x�y�x3/4�s�+��'�J����g���?P�� - ) � [ �È4�"D G����� �e���o$�'�&�$-$צx�r�>�[�f- ��d�g�eqgmdO�ʹ1/4�27�@�A�<�C"����/��*h<Z|,�xbaLQT1'"D-F-E�GTWz�t��8eu��L�٪����T�[��7�5�3/4��t�y���R���W%�%���"::˺���o"���e� �5�9w{dH�n�1/2���GfF�M��>^�88��yJ���"�i� �1/2_[(^\v\{����-�4� �Lp.�A��#�C [2��f/ Ð(y��?x�>;��Z0�x,�?Ì¡P�Ô�z_aVX�������Å�G���:Po�$� ��>��D�a�1Æx����`���Ø�y�� w � /��_�o�gß��f(tm)A�Q�9K&'�3�v�}t t����� �)0%�Ø�D�T�,�|�Åe'5' �V�n����4�(r) n)�<1/4F1/4�|]�):���B'...CE�E)���"%�%�����edde�t���!.�Ue\��:*�(c)f�V��k]v=�r��Fb��&��8�-NX-Z%X�Yo���:lbl��p��3���k���n���gÉIo:���(c)�"��F�...��`�����p1��G"�"�~�wIhJ�"Ì"-j��--#1/23"�"� Ge����ys���s��L�=nSx(c)X��`(c)M٠���Uv�3/4���(c)1/2RWZ��ܴ���%��o(r)6*f���t�3/4�F��~���Û���� ���>�{�������W�ӭ3�Y�\� ���g�W�2�J�W(r)ն��u�?�my��B�D�� �BxHr"R j��_��a8>��'���&U�a�Z�.@��W1*� �KÂb�c pX��(n/"����" �:� �HJ$�Ѹ�< '"i�h��T�:�u�o#5�3�?e...1���(c)�Y-�K<+k�;;�����I���Et=�s�7�O����QA/!Ea��;'~�Z�<�X oI;)ci-UYe9y Ek���*��uj�*4��"�/��(c)����g�L(tm)i�WYlZ�Z����N����"�sD�-(r)g�>�V���9�%�K����O � ";�� ] ��������-�7�y'\rjÊ�i�Y#Y�������gs�1�^�ޣ��V ���OJbJ'�u*jN�""OM��>[W�T�W�=_��x�ɺy�%�2���kJ���1/2;V" vs�h1/2�� �� ��3r7�3/4��'���c �7��>"��է^3/4<�Za�����4g�N-�|X]<�i�/��-WF3/4��ƶ���q}�Æ�j['~�_8� ��$�h?j�&a,�����>$�D9��P7P_��hot9zC����c�c�X{l9�-N-�{��g��L W�B�J � M(tm)-\G+G�MgE��7��(�"e�r&#��gVk[ " �7�N�

  2. Math Studies I.A

    Ethiopia has one of the fastest growing economies in the world, according to The Economist. Ethiopia has showed a fast growing annual GDP and it was the fastest growing non-oil dependent African nation in 2007 and 2008. Although the bloody border war between Ethiopia and Eritrea (1998-2000) and food crisis.

  1. Math Studies - IA

    Majors 2005 - 2006 Ryder Cup Majors US 91/2 Lost 72.48802413 Won Europe 181/2 Won 72.97799674 Lost *2001 has not been included because the Ryder Cup was postponed due to 9/11. MATHEMATICAL PROCESSES The data has now been arranged into basically two categories: win/loss trend in stroke play and win/loss trend in match play.

  2. Math IA - Logan's Logo

    1 unit, my precision was limited to one decimal place, and the uncertainty was quite large (�0.5 units). Another limitation was the thickness of the line in the original logo. Because it was so thick, it was also hard to determine where exactly the points lied.

  1. Math IA- Type 1 The Segments of a Polygon

    The conjecture has been proved on the following page. In to order to able to test the validity of this conjecture, another triangle was produced using the geometer's sketch pad and the conjecture is validated if the ratio produced from GSP matches the value of the ratio provided by the conjecture.

  2. Math IA Type 1 In this task I will investigate the patterns in the ...

    I see a trend developing that D might be inversely related to the absolute value of a but I will look at a few examples to be sure. Now I will look at the value of a = -5 and how that affects the value of D.

  1. Mathematic SL IA -Circles (scored 17 out of 20)

    This tells us about the length of OP should be longer than r. I assume one more situation which has the length of OP is 1 and the length of r is 2.

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    On the other hand; the equation keeps decreasing in value when going back; and does not account for that time cannot be negative; nor that a high jump cannot go ?down? below the ground (negative value) or remain on the ground (zero).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work