• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math Investigation - Sine Law

Extracts from this document...

Introduction

Part 1

Look at the graphs of y = sin x

Compare the graphs of:

y = sin x
image00.jpg

image01.jpg

y = 2sin x

y = 1/3sin ximage02.jpg

image03.jpg

y = 5sin x

The difference between all these graphs is a variable known as A, or amplitude of wave.

When A > 1, the graph stretches vertically.

When 0 < A < 1, the graph compresses vertically.

Also, A is the number that manipulates how far the graph compresses or stretches to. For example, in the graph of y = 2sin x, the graph stretches out to +2 and down to -2. The characteristics of the waveform are altered because of this. The range of the graph is increased or decreased in conclusion.

The domain and range of the graphs are:

y = sin x

D: {x| xεR}

R: {y| -1 < y < 1, yεR}

y = 2sin x

D: {x| xεR}

R: {y| -2 < y < 2, yεR}

y = 1/3sin x

D: {x| xεR}

R: {y| -1/3 < y < 1/3, yεR}

y = 5sin x

...read more.

Middle

y = sin x?

The C variable in y = sin (x + C) is a variable that creates a horizontal translation.

In example, if C is substituted with 90, the equation becomes y = sin (x + 90):

image05.jpg

y = sin x

y = sin (x+90)

It is evident that the entire graph shifted to the left by 90 unit. This can conclude that the amount that the graph moves by is by C, except it moves the direction opposite to the symbol in front of it. In this case, C, 90, caused the graph to move to the left by 90. This said, if C was -90, the graph would move to the right by 90 units. The range for y = sin (x + C) is not affected by the translation.

The domain and range of the graphs are:

y = sin x

D: {x| xεR}

R: {y| -1 < y < 1, yεR}

y = sin (x+90)

D: {x| xεR}

R: {y| -2 < y < 2, yεR}


Part 3

...read more.

Conclusion

 + 90o)

I predicted this function as a vertical stretch since A > 1. The C in the graph translates the line 90 units to the left. There is no D in this function.

D: {x| xεR}

R: {y| -3 < y < 3, yεR}

y = ½sin x + 3

I predicted this function as a vertical compression because A < 1. There is no C present in this function. The D in the function moves the line up 3 units on the y-axis.

D: {x| xεR}

R: {y| -2½ < y < 3½, yεR}

Part 5

The graph of y = cos xand the graph of y = sin xis almost the exact same thing. The only difference is that the same graph would be translated 90o to the left if it involved the cos function.

Essentially, cos (x) = sin (x +90o).

Since this is true, it is conclusive that sine is a very versatile function with many altering variables.

image08.jpg

y = cos x

y = sin (x + 90o)

*Although it is not completely evident, the two lines are overlapping, as I had predicted.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �_� tIME � 2-�� IDATx��lg�Ç.H��J� $�Ur�v˪�Zicʪ���u���Õ��:�I�p"'�u�n7�S�d"m"��%]�$T'J...���Ӷ8�c�"�بEvUP-"8ZV�hs�d�(tm)_-{Æ���(���x�_�y��}ç��E�\ܧ�P-@.@�KP��E@.@�KP�QSï¿½ï¿½Ô g:"�� ����^���"4?c��dK�^1/2�" �@�KP��E@.@�KP��E@.@U�T(�#�[�ն֦�!����l - ��b�C��-��6T5�A��-��X�� Ú\�2 v5����� P�@.A�&�� �"(c)�"�j�� P�@.��I�L�����%0<LÇ¥-@ -�� ��%0: r �N�"c3�����5�@.��Igҵ��z[�Q��~�{���f�9�%x(r)-�H�z�n�,"` *-"OF�Q�L�E����d2I~%��-f96B.���0��<;<���mK�Dc��]͵��'P"��'r9��X)��f����1/4 I�L�h�&P=f"���Cz�r�X�jT�",R�����^� � O...{��R�:~Ñ¡"(tm)jI^On��V�6��w3v{�{i�yw$-���TZ~�r�+�-�s�'ߣ����^�H��̴<�B���ȳ�Ûe(r)D�4=ִ�d��b���N/(tm)!�^�*j"$�T�m���f+(c)}����|�^W-���-Ø{�^tlvpU��1/4 1�\r\��E�^1/2��c"�XGUBH�"h(tm)j ���6��'���㥵K3�P���k�uuu�K|u'`|�Ҵ}ò-�3/4�-;=���V{��(tm)8*8...���t���"�n*�ض1/2mh464���(���j�f2(tm)D"!c��/g%�yW3×R#@�$���w��<�(c)ʪ�6��C�D�q��� ^�=�[�U...sg�j���*Z�I.M�6 ���l��kn9V� ]�?m����-J����A���\"F���\}vv�mO[z.�x�l�(c)( ��`1/4aK�y��S�7g) �=��JTH1/4N(�W�ׯ_?(tm)�6�����w\���C�hO�6���ݢ-hx�a��"T(r)�k��c1/2c�ƺ~(c)v�'��gYc!"�_FmvWrt���n��k��8Px�(r)�]NPUSc��!G�B(�i�2�;��rT� &z-��(r��(r)�e��'Õ�FA^B�n�<��TXs����MPAX,(r){T� (��O "�e����H�+]��� J�B͹�T���lx���]��r%zEt�{;|'c Q���8��"~��......����o�3/4�3/4'wG��-�/�V�_�N�$-�5�8�R��>�.Τ��An��k�...�BγQ ��Q<-�m��s�3(tm)A�so���... �n�5LM�SX� �}xn�' ;"�3�9)Y��� jk�� �S�� j9�Y�����=�="!

  2. Derivative of Sine Functions

    3when c =2 f(x) =sin(x+2) �The line of the tangent becomes flatter and flatter as the points move from left to right within --2to --2,-2to-2,-2 to -2,2-2 to -2. The line of the tangent becomes steeper and steeper as the points move from left to right within-2to --2,--2to-2,-2to-2, -2to 2-2, -2 to 2.

  1. Math Investigation - Properties of Quartics

    Extend this investigation to other quartic functions that are not strictly of a "W" shape. All quartics of a W shape have two distinct inflection points but these properties do not apply to all quartic functions. Four types of quartics have been set up and are written below: * Quartics with two distinct and real inflection points (W shape)

  2. Artificial Intelligence &amp;amp; Math

    However, negative aspects can also be raised, for example, that laptops prevent students from concentrating on their school work, and degrade learning (Borja, 2000). Not all students can afford laptops to buy a laptop for school, so their introduction has also raised the issue of equality and financial discrimination (Corcoran, 2002).

  1. Verify Newtons second law.

    Time taken for wooden block to pass GATE 1 ( � 0.000002 s) ( T1 - t1 ) Time take for wooden block to pass GATE 2 ( � 0.000002 s)

  2. derivitaive of sine functions

    which are the respective maximum and minimum points, the derivative of sine is at 0 for its f (x) value in (x, f (x)). We can note the slope of is at 0 when the function reaches its maximum and minimum amplitude which means that the derivative of is equal to 0 at these points which are.

  1. Function Transformation Investigation

    Expression - will be a vertical translation,up, by -b. Using the stated method above, we can calculate the translation of. First of all let's move all the input and output altering numbers to the left side of the equation: 3 is added to the input and 2 to the output.

  2. Derivatives of Sine Fucntions

    + Lim sinhcosx h? 0 h h? 0 h Lim (cosh - 1) = 0 and Lim sinh = 1 h h? 0 h Lim sinx(0) + cosx(1) h? 0 f'(x) = cosx / Basically, when the Sin functions slope is defined as a number, then in the derived function would be directly affected.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work