• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math Investigation - Sine Law

Extracts from this document...

Introduction

Part 1

Look at the graphs of y = sin x

Compare the graphs of:

y = sin x
image00.jpg

image01.jpg

y = 2sin x

y = 1/3sin ximage02.jpg

image03.jpg

y = 5sin x

The difference between all these graphs is a variable known as A, or amplitude of wave.

When A > 1, the graph stretches vertically.

When 0 < A < 1, the graph compresses vertically.

Also, A is the number that manipulates how far the graph compresses or stretches to. For example, in the graph of y = 2sin x, the graph stretches out to +2 and down to -2. The characteristics of the waveform are altered because of this. The range of the graph is increased or decreased in conclusion.

The domain and range of the graphs are:

y = sin x

D: {x| xεR}

R: {y| -1 < y < 1, yεR}

y = 2sin x

D: {x| xεR}

R: {y| -2 < y < 2, yεR}

y = 1/3sin x

D: {x| xεR}

R: {y| -1/3 < y < 1/3, yεR}

y = 5sin x

...read more.

Middle

y = sin x?

The C variable in y = sin (x + C) is a variable that creates a horizontal translation.

In example, if C is substituted with 90, the equation becomes y = sin (x + 90):

image05.jpg

y = sin x

y = sin (x+90)

It is evident that the entire graph shifted to the left by 90 unit. This can conclude that the amount that the graph moves by is by C, except it moves the direction opposite to the symbol in front of it. In this case, C, 90, caused the graph to move to the left by 90. This said, if C was -90, the graph would move to the right by 90 units. The range for y = sin (x + C) is not affected by the translation.

The domain and range of the graphs are:

y = sin x

D: {x| xεR}

R: {y| -1 < y < 1, yεR}

y = sin (x+90)

D: {x| xεR}

R: {y| -2 < y < 2, yεR}


Part 3

...read more.

Conclusion

 + 90o)

I predicted this function as a vertical stretch since A > 1. The C in the graph translates the line 90 units to the left. There is no D in this function.

D: {x| xεR}

R: {y| -3 < y < 3, yεR}

y = ½sin x + 3

I predicted this function as a vertical compression because A < 1. There is no C present in this function. The D in the function moves the line up 3 units on the y-axis.

D: {x| xεR}

R: {y| -2½ < y < 3½, yεR}

Part 5

The graph of y = cos xand the graph of y = sin xis almost the exact same thing. The only difference is that the same graph would be translated 90o to the left if it involved the cos function.

Essentially, cos (x) = sin (x +90o).

Since this is true, it is conclusive that sine is a very versatile function with many altering variables.

image08.jpg

y = cos x

y = sin (x + 90o)

*Although it is not completely evident, the two lines are overlapping, as I had predicted.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �_� tIME � 2-�� IDATx��lg�Ç.H��J� $�Ur�v˪�Zicʪ���u���Õ��:�I�p"'�u�n7�S�d"m"��%]�$T'J...���Ӷ8�c�"�بEvUP-"8ZV�hs�d�(tm)_-{Æ���(���x�_�y��}ç��E�\ܧ�P-@.@�KP��E@.@�KP�QSï¿½ï¿½Ô g:"�� ����^���"4?c��dK�^1/2�" �@�KP��E@.@�KP��E@.@U�T(�#�[�ն֦�!����l - ��b�C��-��6T5�A��-��X�� Ú\�2 v5����� P�@.A�&�� �"(c)�"�j�� P�@.��I�L�����%0<LÇ¥-@ -�� ��%0: r �N�"c3�����5�@.��Igҵ��z[�Q��~�{���f�9�%x(r)-�H�z�n�,"` *-"OF�Q�L�E����d2I~%��-f96B.���0��<;<���mK�Dc��]͵��'P"��'r9��X)��f����1/4 I�L�h�&P=f"���Cz�r�X�jT�",R�����^� � O...{��R�:~Ñ¡"(tm)jI^On��V�6��w3v{�{i�yw$-���TZ~�r�+�-�s�'ߣ����^�H��̴<�B���ȳ�Ûe(r)D�4=ִ�d��b���N/(tm)!�^�*j"$�T�m���f+(c)}����|�^W-���-Ø{�^tlvpU��1/4 1�\r\��E�^1/2��c"�XGUBH�"h(tm)j ���6��'���㥵K3�P���k�uuu�K|u'`|�Ҵ}ò-�3/4�-;=���V{��(tm)8*8...���t���"�n*�ض1/2mh464���(���j�f2(tm)D"!c��/g%�yW3×R#@�$���w��<�(c)ʪ�6��C�D�q��� ^�=�[�U...sg�j���*Z�I.M�6 ���l��kn9V� ]�?m����-J����A���\"F���\}vv�mO[z.�x�l�(c)( ��`1/4aK�y��S�7g) �=��JTH1/4N(�W�ׯ_?(tm)�6�����w\���C�hO�6���ݢ-hx�a��"T(r)�k��c1/2c�ƺ~(c)v�'��gYc!"�_FmvWrt���n��k��8Px�(r)�]NPUSc��!G�B(�i�2�;��rT� &z-��(r��(r)�e��'Õ�FA^B�n�<��TXs����MPAX,(r){T� (��O "�e����H�+]��� J�B͹�T���lx���]��r%zEt�{;|'c Q���8��"~��......����o�3/4�3/4'wG��-�/�V�_�N�$-�5�8�R��>�.Τ��An��k�...�BγQ ��Q<-�m��s�3(tm)A�so���... �n�5LM�SX� �}xn�' ;"�3�9)Y��� jk�� �S�� j9�Y�����=�="!

  2. Derivative of Sine Functions

    3when c =2 f(x) =sin(x+2) �The line of the tangent becomes flatter and flatter as the points move from left to right within --2to --2,-2to-2,-2 to -2,2-2 to -2. The line of the tangent becomes steeper and steeper as the points move from left to right within-2to --2,--2to-2,-2to-2, -2to 2-2, -2 to 2.

  1. Artificial Intelligence &amp;amp; Math

    But some agencies have voiced concerns that a lack of understanding of technical specifications, charging and data delivery are frustrating attempts by police to gain information. According to sources within the ISP industry, who did not wish to be named, various law-enforcement agencies were working directly with large ISPs to

  2. Function Transformation Investigation

    This creates a compression (or stretch) horizontally, because that is where the input values are plotted. The explanation of what happened to the graphs where the output was multiplied is simply that whatever was outputted was multiplied by the inverse of the multiplication factor, therefore stretching (or compressing)

  1. Investigating the Graphs of Sine Function.

    This conjecture can be expressed in terms of transformations because it can be noticed by looking at all the graphs shown above, that all of them are transformations of the base graph y = sin x. For example, the transformation of the graph y = sin x into curve y

  2. derivitaive of sine functions

    Beginning at -2 the function's gradient is increasing positively until it reaches its maximum amplitude of 1, after a period of /2, or at -/2. Then from -/2 to 0, the gradient decreases negatively until it reaches -1 for its minimum amplitude.

  1. Interdisciplinary Unit

    11 162 48 80 2,52 4,5 25 30 12 163 49,5 80 2,54 4,65 25 32 12 163 51 80 2,56 4,79 27 32 12 164,5 51 84 2,57 4,9 28 32 16 166,5 53 84 2,58 4,9 30 33 16 168 55 86 2,7 5 30 33 19 168

  2. SL Math IA: Fishing Rods

    original measurements. Therefore we now know that the septic function that utilised all of the original data points is the best representation of said data. Other Function: The next goal in this investigation is to find another function that could be used to represent this data.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work