• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

math portfolio type 1

Extracts from this document...


IB Mathematics SL

Portfolio Type I

Matrix Powers

Done by: Bassam Al-Nawaiseh


  • Introduction:

Matrices are rectangular tables of numbers or any algebraic quantities that can be added or multiplied in a specific arrangement. A matrix is a block of numbers that consists of columns and rows used to represent raw data, store information and to perform certain mathematical operations. The aim of this portfolio is to find general formulas for matrices in the form    .        image00.pngimage01.pngof

Each set of matrices will have a trend in which a general formula for each example is deduced.

  • Method 1:

Consider the matrix M =image17.pngimage18.png when k = 1.

Table 1: Represents the trend in matrix M = image17.pngimage18.pngas n is changed in each trial.                                



n = 1


n = 2


n = 3


n = 4


n = 5


n = 10


n = 20


Matrix M is a 2 x 2 square matrix which have an identity. As n changes the zero patterns is not affected while the 2 is affected. 2n is raised to the power of n. When n =1, 21 = 2, when n = 2, 2² = 4 and when n = 3, 2³ = 8 and so on. So as a conclusion, Mn = image19.pngimage20.png

  • Method 2

Consider the matrices P = image21.pngimage22.png

...read more.


image10.png1 = 20image09.pngimage10.png = image09.pngimage10.png

n = 2

image09.pngimage10.png2 = 21 image59.pngimage60.png= image55.pngimage56.png

n = 3

image09.pngimage10.png3= 22image97.pngimage98.png = image99.pngimage100.png

n = 4

image09.pngimage10.png4= 23image14.pngimage15.png= image11.pngimage12.png

n = 5

image09.pngimage10.png5= 24image102.pngimage103.png= image03.pngimage04.png

  As for two consecutive matrices, the trend is found so as the power n increases by a factor of one. The scalar is doubled in each trial and then a certain factor is added to the elements of matrix S. taking n = 2 as an example, the scalar is found by doubling the power n = 1 (1x2=2). The factor of addition is determined by multiplying the difference in x and y inside the matrix with a power less with one by 3. In matrix n = 1, the difference in the elements is 2 (4-2=2), the answer is multiplied by 3 (2x3=6). Finally 6 is added to the matrix of n = 2. The general formula for this trend is Sn = 2 image05.pngimage06.png where n = 1. Notice that this formula needs two consecutive matrix powers in order to be applied. Another general formula can be derived for this sequence. As the power n changes, the power in which the scalar is raised will change also.

Sn = 2n-1 image07.pngimage08.png where n is an integer. To check the validity of this formula n = 4 is used as an example.

Using GDC: image09.pngimage10.png4 =image11.pngimage12.png

Using the General Formula:image09.pngimage10.png4=23image07.pngimage08.png=8image14.pngimage15.png=image11.pngimage12.png.

  • Method 3:
  1. Consider the matrices in the form Q = image01.pngimage00.png.

Table 3: Represents the trend in matrix Q as k is increased by one in each trial.



General Formula

k = 1

M = image17.pngimage18.png

Mn = 2n-1 image19.pngimage20.png

k = 2

P = image21.pngimage22.png

Pn = 2n-1 image23.pngimage24.png

k = 3

S = image09.pngimage10.png

Sn = 2n-1image07.pngimage08.png

k = 4

D = image26.pngimage27.png

Dn = 2n-1image28.pngimage29.png

k = 5

F = image30.pngimage31.png

Fn = 2n-1image32.pngimage33.png

k = 6

N = image35.pngimage36.png

Sn = 2n-1image37.pngimage38.png

...read more.


image01.pngimage00.pngn, so matrix B = image52.pngimage53.png. From rule A and the above examples, the following formula is deduced: Bn = 2n-1image39.pngimage40.png

Using GDC: image52.pngimage53.png2 = image55.pngimage56.png

Using Rule A: image52.pngimage53.png2 = 22-1 image57.pngimage58.png = 2 image59.pngimage60.png = image55.pngimage56.png

As a conclusion, rule A also can be applied when k is a negative value.

  1. Fraction Values:

Matrix L represents the matrix where k is a fraction value raised to the power of n, k = 3/2 and n = 3 in a matrix of the form image01.pngimage00.pngn, so matrix L =image62.pngimage63.png. From the above examples, Ln = 2n-1image39.pngimage40.png.

Using GDC:  image62.pngimage63.png3 = image64.pngimage65.png

Using Rule A: image62.pngimage63.png3 = 23-1 image66.pngimage67.png= 4 image68.pngimage69.png = image64.pngimage65.png.

From the above results, it is shown that rule A is valid even for fraction numbers.

  1. Irrational Values:

Matrix U represents the matrix where k is an irrational number which is raised to the power of n, k = image70.png and n = 2 in a matrix of the form

image01.pngimage00.pngn, so matrix L = image71.pngimage72.png. From the above examples,

Un = 2n-1image39.pngimage40.png.

Using GDC: image71.pngimage72.png2 = image73.pngimage74.png.

Using Rule A: image71.pngimage72.png2 = 22-1 image75.pngimage76.png =

2 image77.pngimage78.png = image73.pngimage74.png

From those final results, we can prove that this statement, Rule A, can also be applied to irrational integers.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IB HL math portfolio type II. Deduce the formula Sn = ...

    2 (a3 + a4) = (a1 + a2) + (a5 + a6) So we get: 2 (an + an+1) = (an-2 + an-1) + (an+2 + an+3) Proof: 2[a1 + (n - 1)d + a1 + nd] = a1 + (n - 3)d + a1 + (n - 2)d] +

  2. Extended Essay- Math

    �'-�I~3��]'�eDw�����A"I���"�g�-"(tm)�u�"@�"�v�3/4�*Z� �-�`/��|��K�"�� �S7 �<c~� ?��ND\\\NNN�]�nÂ��F�-�n��N���`3/4��3/4� ����? �]��(r)��/D���3/4�Â�"�? ��&��an ��c?--�Zq�"�...�E�'�.0��3f�@�ßod�0�Ç>'!R�)�/"q1�����c����8�Cv(� ��6�ji-8i;�RRR,�����1/2p�#s�)9��'���Í��;�'mZ..�0�k8��`��`�/-s1/2%"D�x-,Yb�ÞÚµkgeeé�B��-Ô��ҥ ��Z"�����3/4�;�#@�Kjb"��-=z�--��FX�9�-�4p��3g �x-_� ���20�E�S�Q���k{p�KOOwҦ���RWdH�Kg&8�w�ܹU"V�$�j?=�...�-OA$�<��W�� g{l�)'�E�-OY$�<����k{�v��"-�a�\�"���b>���;�1/4�M�|�3`?���ocnn(r)��E�P^8�[~�M�ط��s��+����x~�Ȩ}��-�3/48igfÛ±oO�z���'�ub�L2(r)�;oJ���V�^m"od=k֬�`�'!R�)[~�m�;im���`(c)�-���;R4��� .../��8i�VV\a�K����"3�� H~'�"�'m~��'�O�#Rb�rc�"�Ax�$�p�W ��;v|뭷�����l,�[���24Ý�ïRSS"''"�yn��x����w�Ƴg��F:3'mZ.�}��Ǩ--�*s�$��A�zØ°a� vã¬*Z~N�G�H��$�h�bF~l���#-�9��g�2'oD�"zH�6'�x1�n�I�Ö�n��[��̹'�B�7^�aß�k{!�FÏ�!'Q�&�/ά�3h� 8�;��Y[��ڵ+r>U'_�)�"W�^vG�5�\����]�'���...�=L��9RPy���"/�yBΕ/qW��am�ر7n"s��A��� �''v`��� ���7�a"�x�"6���#����QT�c% �m7#��b��H�-�5l��^�+(r)C��~{M�t�R"OÚ´VtOV(r)\im��MN���hx�cm��"6�U~���k-�����1/2v(tm)n1/4�7~�(tm)g�(tm)�1/27�"E��9sn���S1���e������"��4" �-_��Û(r)Ds�o�10a��Ç9i�r|�\�6a��Ê-�����p�>}�KW�kԨ����W �r$��� &��w�.�Mku`$_k�"67v�-6��(c)S�χf��|f '_ [0a)�?�@H�,�-��vE�� &,\���S�p��Ni%4�K>H~�l7�.]� D�Seh���gYÍ5#'�2Ë5 �q�� K�?2*�Y���(tm)p�o�u�g���(tm)(tm)(tm)j�""T(c)£ï¿½ï¿½(c)��-��`x����f�'� �*!� ��(tm)�Q���k��Z�nݤI���t��lé��"� l�bl��Z�w��СC�f$�pO*^1/48/d��X��o PD1/4�I�X�S�...ÄW�LU �_&����� �<� �����'��Q��7nS���1���F�1/4fÍ���'��(c)" � ��x×­['�I�5 �Z�Z�xzOl���~#��Lu�]"V� ������"�í����Uo:#o�a˳� ��...�"�"��<��9�+n.JO��l,iOÚY"h/`F��'���1/276�edd ��Í1/2�F���=��W�fË�p�f�3/4}�� V��k""���;\+>��� ��`>B�$&&��T��8F�T�3/4$�^�Λ7O�"6�*�/V����3/4�L�28��e04��(r)�e�/ �5D ,�������n�B��G7%��"Dϸq�<2�G"N3/4�h(vM�G7(��)))�"*-�N3/4�(tm)�-B$�-,B^a���=WG� (c)-Λt�� ""q��j� 6l���.=~#'n����ض�/-S� ��a 7����>}�$$$"M��L�a���J�(tm)�kV"��G�-6...

  1. Math Portfolio Type II Gold Medal heights

    If the asymptote moves further into the positive values. The last parameter c controls the horizontal compression or expansion. Causes a horizontal compression, effectively flattening the graph. On the other hand if the graph is expanded by a factor of , this expression is also valid for the factor of the compression.

  2. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    Therefore, I assume that the slope of the trend line would be steeper. b. I also assume that there is left over drug in the bloodstream from the previous dose while taking the next dose. The drug is supposed to be taken every 6 hours and according to the given

  1. Math Portfolio: trigonometry investigation (circle trig)

    160 0.34202014 -0.93969 -0.3639702 -0.36397023 180 1.2251E-16 -1 -1.225E-16 -1.2251E-16 200 -0.3420201 -0.93969 0.36397023 0.363970234 220 -0.6427876 -0.76604 0.83909963 0.839099631 240 -0.8660254 -0.5 1.73205081 1.732050808 260 -0.9848078 -0.17365 5.67128182 5.67128182 270 -1 -1.8E-16 undefined 5.44152E+15 280 -0.9848078 0.173648 -5.6712818 -5.67128182 300 -0.8660254 0.5 -1.7320508 -1.73205081 320 -0.6427876 0.766044 -0.8390996 -0.83909963

  2. Artificial Intelligence &amp;amp; Math

    IT Background of the Issue Laptop usage in U.S. schools increased by 43% in the 2001-2002 school year (Suryaraman, 2002). Last year, 15% of school districts in America were participating in a laptop initiative (Corcoran, 2002). Although desktop computers far outnumber laptops in the school environment, an increasing trend in

  1. Math Portfolio - SL type 1 - matrix binomials

    By examining the previous result, the elements in the matrix doubled as the number of power increased. It was also found that the end products of the matrix were the result of two to the power of one less than the power of X.

  2. Math IB HL math portfolio type I - polynomials

    a zero of P(x), then k must be a factor of a0, and m must be a factor of an. To understand this conclusion, study the function P(x)= a3x3+a2x2+a1x+a0, and suppose that P(k/m) = 0. Can you see that k must be a factor of a0, and m must be a factor of a3?

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work