• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math Portfolio Type 2 - PATTERNS FROM COMPLEX NUMBERS

Extracts from this document...

Introduction

image43.jpg

Erzurum İhsan Doğramacı Vakfı

Özel Bilkent Laboratuvar Lisesi

Mathematics Portfolio HL Type I

Topic

PATTERNS FROM COMPLEX NUMBERS

Name – Surname

Selim TEPELER

IB No:

DPR160 (006040-047)

Introduction

In this portfolio we are gonna use complex number patterns which are related to roots of complex number , and we connect them our knowledge about analytic geometry ( which is distance formula) . Finally we will try to formulate a conjecture. This conjecture will help us to finding distance between roots.

PART A

Use de Moivre’s theorem to obtain solutions to the equation image00.png

Questions asks ; image01.png

 and firstly we should turn it into complex form;

image02.png

De Moivre’s theorem claims that ;

image44.jpg  where k = 0, 1, 2 we found ;

- Cis(0) -cis(120) -cis(240) (by the way cis(α) means ‘’ cos(α)+isin(α))

  • Use graphing software to plot these roots on an Argand diagram as well as a unit circle with centre origin.

image49.png

  • Choose a root and draw line segments from this root to the other two roots.

image50.png

  • Measure these line segments and comment on your results.

image51.png

As we see that the length of line segments are equal to each other. (one segment is 0.01 unit bigger than the others because of accuracy of graphing software)

Repeat the above for the equations image03.png

 and image04.png

  •  Comment on your results and try to formulate a conjecture.
...read more.

Middle

 value cos(0) ,  image11.png

 is cos(72) image12.png

 value is sin(0) image13.png

 value is sin(72).

Now we will put them on equation .

image14.png

image15.png

1+1-2(cos72*cos 0 +sin72*sin0)

We will use this trigonometric identities ;

image54.png and

image55.png

When we put our value at these formula ; image16.png

=cos 72

Lastly our final formula is ;

image17.png

Factorize image18.png

  •  for n = 3, 4 and 5.

image19.png

-1= (z-1)(image20.png

image21.png

-1= (z-1)(image22.png

image23.png

-1= (z-1)(image24.png

  • Use graphing software to test your conjecture for some more values of n € Z+ and make modifications to your conjecture if necessary.

Lets try it for n=6

image56.png

Testing for Aw distance ;

 a=cis0 and w is cis120

image17.png

image25.png

=1.732050… ≅17.3 (because of accuracy of software)

or testing for Az distance ;

image17.png

image26.png

=1= 1 from graph .

  • Prove your conjecture.

PART B

...read more.

Conclusion

=i

image44.jpg  where where k = 0, 1, 2,3,4

We found ;

Cis(18) cis (90) cis(162) cis(234) cis(306)

  • Use graphing software to represent each of these solutions on an Argand diagram.

For image28.png

=i

image45.png

For image29.png

=i

image46.png

For image30.png

=i

image47.png

Generalize and prove your results for i  image27.png

  • =a + bi , where |a +bi |=1.

|a +bi |=1 so it means that ;

image31.png

+image32.png

1=image33.png

As we can see r=1 so  image27.png

=a+bi= r cis(θ)

When we use De Moivre’s theorem, it states ;

image48.jpg

For our solution we will use reverse way of it ;

image34.png

 r=1 so we dont need r at equation ;

z= image35.png

let’s find the image36.png

 value with tangent ;

tan(image37.png

=image38.png

image36.png

 = image39.png

  and  image40.png

=image41.png

   so z=cis(image42.png

)

  • What happens when |a +bi |≠1?

That doesn’t apply when when |a +bi |≠1 because r value should equal to 1.

Resources

http://en.wikipedia.org/wiki/Distance

http://en.wikipedia.org/wiki/List_of_trigonometric_identities

http://www.rapidlearningcenter.com/mathematics/trigonometry/18-Complex-Numbers-and-De-Moivre-Theorem.html

http://demonstrations.wolfram.com/PatternsFromMathRulesUsingComplexNumbers/

http://en.wikipedia.org/wiki/Imaginary_number

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ܰ���vP%�0JU[�`(7DHO�![1/4 P�iÓ¦sT��# �Ê_���HeE�&>��..."8g$� ��k��d� E4(c)�a�)��sH-_(tm)�¥P/.Ù³8#���H��)�t1��`�)��s�-_���â£2q� �"P�F���x���x3�g�B�E�`��rp�@1(tm) �Ud� ����0�0&AVx8�mT�reG�=x& 8� �(c)@i�1/2{���J��;x'$�mT�bEG�=Cv�va� 9��%Ol�X�` (r)�È���.�R��=�"�{����(tm)%�"@/�M~PF���¬*�Ls0B3�.�Â���42@(tm)"��G ���{� a#̲��A q��"�ï±;�`) �; ..�zq�zB�',��z̭�P[#J�1$;pÇ���\�LCD��5�*��ÈQ���L8�,x��V(tm)S IDATERu"�����"T�y|�`Ís�x��×��xX*`x #��y���Å�"�@h� (c)!|'��Gi�r�8l߰� ����'*��X$���z�9*��O �:� A��� ��$�~iT���'"��U"s���0�� �=�JT���Ej[@Ea��(tm)c��)*åN�U�E��/�ojjZ*\@�LdT1/28��;S��9x�ڵ)�Q.:T0N*T-0P�f�B�/��U"V�9r���g�6�Tq$� a�X� -2d�"RV,t�M-�C�k]tZ�y�qÆ "W� �7o����kjj�n�Z[[\g'�Qi�Y\4"?Cl�|� (:W� F )��;�Ry��w/X� ���_��������"wGa������~���`" U<��...�� ���h��(c)e"c�P��0-����z�g�q�O�Æ"v��{��A\�h�� È�8�Ep�����d:W:-޵�"3� J��/Þµk�����kii�� ��Lhj\�[p'�1/4�5���Ü�N[o���"�.Up̢ܲe ���^{�]w!|`��...� �"���1/2{��a�>T0��[�DX=��-�a'��9�oc"�O��n��W�hO>�$��s���ر#�ZP�3�X�b�С1O��p8�"����a�qÒ¤...���"WEE4L`'�W� �T-`�hg�ܹ'N1/4��`���"��(��66��A1 �0p�D_� >y<' 0�q�\���� �</ �'x �]�|2&L��#"��F�/"q�D�cB��d1D�hx=^w�u�'��KG@��w�$��C� Կ�� Ij ;u�T�P1� �#"O(tm)2...1J0�����S�NpU�c*�+���<X��*��qlP�@(tm)s�...��-���a FY���=���T��U�E�NË�.ب�>1/4�+�g"N�FƯ\"���)4(c)`����M���uuu��uN�� op<7Y^�hk/9�&�M��b� aT�Jjl/�;�aj�'�!��<U�t :D?T�9�y�ad���O�m4z �ڡ *8�v9GeFy� ������C�>�$K�IÅ�4�4`�QSb�#@?K�Mo��0{�C�1/4r�S ��Y�6�,�P���!@��m2H#�'�= Ar5� \QÖS��"��_/δ�8p"���1/4D4�"��D��kR*8.Z9���#A�K� áµï¿½ï¿½E�]P��C�#suu�(tm)

  2. Ib math HL portfolio parabola investigation

    Now I will further expand my portfolio by investigating patterns formed in with any line. Let us assume that: * P, N are the x coefficients of straight lines y= Px + p and y=Nx + n. * P, N * P < N The basic quadratic equation y =

  1. Stellar numbers

    Ultimately giving: The similar increasing values follows a general pattern that can be expressed as 2p(n) times (n-1) divided by 2, for values of n=1,2,3,4...n. That is p is the number of vertices and n is the stages of the stellar shape.

  2. Math Portfolio: trigonometry investigation (circle trig)

    Therefore leading radius R always positive and real number. Thus as logical expression the circle's radius can't be represented as a negative value. Plus Radius is fixed value. Since we are working on counter two revolutions- counter clockwise, clock wise on the circle, positive angles are measured in a counter clock wise direction and negative angles are measure in clockwise direction.

  1. Salida del sol en NY

    vez mas sim�trica, por lo tanto tender�n a igualarse lo que causa que el d�a durara, lo mismo que la noche, entonces si se quiere que hacer un modelo se tendr� que tomar que tan cerca del ecuador estamos, as� poder saber que entre m�s cerca del la hora del alba ser� aproximadamente semejante al d�a anterior.

  2. Math Portfolio Type II Gold Medal heights

    on the curve of the graph must also be taken into consideration. The graph attained by this calculation does fit these points very well as the graph on the following page proves. The axis' have again been shifted to provide a better visualization of the graph.

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    If I do each separately, they should be similar to each other. Approach 3. Maximum and Minimum Maximum is at the 18th hour at the beginning of the 4th dose of drug with the amount of 14.7349 microgram in the bloodstream.

  2. High Jump Gold Medals Portfolio Type 2 Math

    Figure 2: Points from Table 2 plotted on a linear graph with line of best fit generated by Graphical Analysis Gradient: Using points E (24,212) and G (32,218) m= y2-y1x2-x1 = 218-21232-24=68=34 Linear Equation Shown on Graph: y-212x-24=34 ? Cross multiply y-212=34(x-24)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work