• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math Portfolio Type 2 - PATTERNS FROM COMPLEX NUMBERS

Extracts from this document...

Introduction

image43.jpg

Erzurum İhsan Doğramacı Vakfı

Özel Bilkent Laboratuvar Lisesi

Mathematics Portfolio HL Type I

Topic

PATTERNS FROM COMPLEX NUMBERS

Name – Surname

Selim TEPELER

IB No:

DPR160 (006040-047)

Introduction

In this portfolio we are gonna use complex number patterns which are related to roots of complex number , and we connect them our knowledge about analytic geometry ( which is distance formula) . Finally we will try to formulate a conjecture. This conjecture will help us to finding distance between roots.

PART A

Use de Moivre’s theorem to obtain solutions to the equation image00.png

Questions asks ; image01.png

 and firstly we should turn it into complex form;

image02.png

De Moivre’s theorem claims that ;

image44.jpg  where k = 0, 1, 2 we found ;

- Cis(0) -cis(120) -cis(240) (by the way cis(α) means ‘’ cos(α)+isin(α))

  • Use graphing software to plot these roots on an Argand diagram as well as a unit circle with centre origin.

image49.png

  • Choose a root and draw line segments from this root to the other two roots.

image50.png

  • Measure these line segments and comment on your results.

image51.png

As we see that the length of line segments are equal to each other. (one segment is 0.01 unit bigger than the others because of accuracy of graphing software)

Repeat the above for the equations image03.png

 and image04.png

  •  Comment on your results and try to formulate a conjecture.
...read more.

Middle

 value cos(0) ,  image11.png

 is cos(72) image12.png

 value is sin(0) image13.png

 value is sin(72).

Now we will put them on equation .

image14.png

image15.png

1+1-2(cos72*cos 0 +sin72*sin0)

We will use this trigonometric identities ;

image54.png and

image55.png

When we put our value at these formula ; image16.png

=cos 72

Lastly our final formula is ;

image17.png

Factorize image18.png

  •  for n = 3, 4 and 5.

image19.png

-1= (z-1)(image20.png

image21.png

-1= (z-1)(image22.png

image23.png

-1= (z-1)(image24.png

  • Use graphing software to test your conjecture for some more values of n € Z+ and make modifications to your conjecture if necessary.

Lets try it for n=6

image56.png

Testing for Aw distance ;

 a=cis0 and w is cis120

image17.png

image25.png

=1.732050… ≅17.3 (because of accuracy of software)

or testing for Az distance ;

image17.png

image26.png

=1= 1 from graph .

  • Prove your conjecture.

PART B

...read more.

Conclusion

=i

image44.jpg  where where k = 0, 1, 2,3,4

We found ;

Cis(18) cis (90) cis(162) cis(234) cis(306)

  • Use graphing software to represent each of these solutions on an Argand diagram.

For image28.png

=i

image45.png

For image29.png

=i

image46.png

For image30.png

=i

image47.png

Generalize and prove your results for i  image27.png

  • =a + bi , where |a +bi |=1.

|a +bi |=1 so it means that ;

image31.png

+image32.png

1=image33.png

As we can see r=1 so  image27.png

=a+bi= r cis(θ)

When we use De Moivre’s theorem, it states ;

image48.jpg

For our solution we will use reverse way of it ;

image34.png

 r=1 so we dont need r at equation ;

z= image35.png

let’s find the image36.png

 value with tangent ;

tan(image37.png

=image38.png

image36.png

 = image39.png

  and  image40.png

=image41.png

   so z=cis(image42.png

)

  • What happens when |a +bi |≠1?

That doesn’t apply when when |a +bi |≠1 because r value should equal to 1.

Resources

http://en.wikipedia.org/wiki/Distance

http://en.wikipedia.org/wiki/List_of_trigonometric_identities

http://www.rapidlearningcenter.com/mathematics/trigonometry/18-Complex-Numbers-and-De-Moivre-Theorem.html

http://demonstrations.wolfram.com/PatternsFromMathRulesUsingComplexNumbers/

http://en.wikipedia.org/wiki/Imaginary_number

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ܰ���vP%�0JU[�`(7DHO�![1/4 P�iÓ¦sT��# �Ê_���HeE�&>��..."8g$� ��k��d� E4(c)�a�)��sH-_(tm)�¥P/.Ù³8#���H��)�t1��`�)��s�-_���â£2q� �"P�F���x���x3�g�B�E�`��rp�@1(tm) �Ud� ����0�0&AVx8�mT�reG�=x& 8� �(c)@i�1/2{���J��;x'$�mT�bEG�=Cv�va� 9��%Ol�X�` (r)�È���.�R��=�"�{����(tm)%�"@/�M~PF���¬*�Ls0B3�.�Â���42@(tm)"��G ���{� a#̲��A q��"�ï±;�`) �; ..�zq�zB�',��z̭�P[#J�1$;pÇ���\�LCD��5�*��ÈQ���L8�,x��V(tm)S IDATERu"�����"T�y|�`Ís�x��×��xX*`x #��y���Å�"�@h� (c)!|'��Gi�r�8l߰� ����'*��X$���z�9*��O �:� A��� ��$�~iT���'"��U"s���0�� �=�JT���Ej[@Ea��(tm)c��)*åN�U�E��/�ojjZ*\@�LdT1/28��;S��9x�ڵ)�Q.:T0N*T-0P�f�B�/��U"V�9r���g�6�Tq$� a�X� -2d�"RV,t�M-�C�k]tZ�y�qÆ "W� �7o����kjj�n�Z[[\g'�Qi�Y\4"?Cl�|� (:W� F )��;�Ry��w/X� ���_��������"wGa������~���`" U<��...�� ���h��(c)e"c�P��0-����z�g�q�O�Æ"v��{��A\�h�� È�8�Ep�����d:W:-޵�"3� J��/Þµk�����kii�� ��Lhj\�[p'�1/4�5���Ü�N[o���"�.Up̢ܲe ���^{�]w!|`��...� �"���1/2{��a�>T0��[�DX=��-�a'��9�oc"�O��n��W�hO>�$��s���ر#�ZP�3�X�b�С1O��p8�"����a�qÒ¤...���"WEE4L`'�W� �T-`�hg�ܹ'N1/4��`���"��(��66��A1 �0p�D_� >y<' 0�q�\���� �</ �'x �]�|2&L��#"��F�/"q�D�cB��d1D�hx=^w�u�'��KG@��w�$��C� Կ�� Ij ;u�T�P1� �#"O(tm)2...1J0�����S�NpU�c*�+���<X��*��qlP�@(tm)s�...��-���a FY���=���T��U�E�NË�.ب�>1/4�+�g"N�FƯ\"���)4(c)`����M���uuu��uN�� op<7Y^�hk/9�&�M��b� aT�Jjl/�;�aj�'�!��<U�t :D?T�9�y�ad���O�m4z �ڡ *8�v9GeFy� ������C�>�$K�IÅ�4�4`�QSb�#@?K�Mo��0{�C�1/4r�S ��Y�6�,�P���!@��m2H#�'�= Ar5� \QÖS��"��_/δ�8p"���1/4D4�"��D��kR*8.Z9���#A�K� áµï¿½ï¿½E�]P��C�#suu�(tm)

  2. Stellar numbers

    Hence the general statement can be produced: is the function of the 5-vertices stellar shape to the nth term is the function of the 7-vertices stellar shape to the nth term When comparing 3 functions it is clear that they are quite similar: 5-vertices function (p=5)

  1. Ib math HL portfolio parabola investigation

    Hence the ONLY condition for my conjecture is that the parabola MUST have four intersection points with the two lines.) ANY PARABOLA INTERSECTING WITH ANY 2 LINES In the previous part of my portfolio I investigated the patterns formed in the intersection of two lines y=x and y=2x with any parabola and found D.

  2. Stellar Numbers. After establishing the general formula for the triangular numbers, stellar (star) shapes ...

    the screenshots below This resulted in the general formula Rn = 4n2 - 4n + 1 Rn = an2 + bn + c Rn = 4n2 + bn + 1 R1 = (4)(1)2 + b(1) + 1 1 = 4 + b + 1 b = - 4 ?

  1. Stellar Numbers. In this study, we analyze geometrical shapes, which lead to special numbers. ...

    4 61 As one can see, the numbers are identical, which supports the validity of the formula. Another example to prove the general statement as a stellar with 7 vertices (p=7) is going to be attempted below: n - Stage Number Tn as calculated manually , p=5 1 1 2

  2. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    = 6 + 10 =16 For stage 4: 5Sn = 5Sn-1 + 5n 5S4 = 5S3 + (5x4) =31 + 20 =51 Finding a general statement: pSn 5S0 5S1 5S2 5S3 5S4 5S5 5S6 Sequence 1 6 16 31 51 76 106 First Difference 5 10 15 20 25 30

  1. The segments of a polygon

    I prove conjecture. 4. If segments were constructed in a similar manner in other polygons (e.g. pentagons, hexagons, etc.) would a similar relationship exist? Investigate the relationship in another regular polygon. I draw a pentagon which sides are divided in ration 1:2 Firs I have to determine the sides: So

  2. Salida del sol en NY

    Algo interesante es lo que sucede cuando se traslada uno ya sea al oeste o al este, ya que en este caso la variaci�n en la salida del sol es poco cambiante solo se ve afectada por la inclinaci�n terrestre si careciera de esta, no importar�a si te trasladas oeste

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work