• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math Portfolio type I Logarithm Bases

Extracts from this document...


Lukasz Weclas

Mathematics Standard Level

Portfolio Assignment Type II

Logarithm bases

Lukasz Weclas

        December 2009

Table of Contents

Table of Contents                                                                        02

Introduction                                                                                 03

Write down the next two terms of each sequence                                        03

Find an expression for the nthterm of each sequence and write in form image00.png                04

Calculate the value of given logarithms                                                 06

Describe how to obtain the third answer in each row from the first two answers        08

Create two more examples that fit the pattern                                        08

Find the general statement that expresses logabx                                        09

Test the validity of your general statement using other values of a, b and x        10

Discuss the scope and limitations of a, b and x                                        11

Explain how you arrived at your general statement                                        11

Technology used                                                                        12

Bibliography                                                                                12


        Logarithm is defined as the exponent that indicates the power to which a base number is raised to produce a given number[1]. In this assignment I shall attempt to investigate the characteristics of sequences of logarithms. As a conclusion, I will try to find the general statement and finally the range and limitations of a, b and x will be considered.

...read more.


image44.png. The answers will be justified with the use of GDC Casio CFX-9850GB PLUS.

A: image46.png

Now I substitute n for any given number, for example 15. Let n=15


To justify my answer, I will use my GDC to check if it is correct


The answer is the same, therefore it is correct.

B: image02.png

Now I substitute n for any given number, for example 12. Let n=16


To justify my answer, I will use my GDC to check if it is correct

The answer is the same, therefore it is correct.

C: image05.png

Now I substitute n for any given number, for example 8. Let n=8


To justify my answer, I will use my GDC to check if it is correct


The answer is the same, therefore it is correct.


Conducting the same process is not possible in case of sequence X, but the three equations above should prove that calculation would be possible if k, n image09.pngimage10.png.

Calculate the value of given logarithms

The next task is to calculate the following sequences given in the assignment, then give my answers in the form image00.png, where p, q image09.pngimage10.png:


...read more.


a, b ≠ 1. The best method to check the validity of my general statement is to use different values of a, b and x.
  1. Let a = 3, b = 9 and x = 729


Next it is necessary to calculate to value of image38.png

Later the use of formula image40.png

In this example the statement is true, because image41.png

  1. Let a = 4, b = 6 and x = 1


By the definition it is known that logwq = j, then q = wj, therefore if q=1 then j = 0. In that case log41 = 0, log61 = 0 and log241 = 0. As a conclusion, the argument of a logartihm has to be different from 1.

Discuss the scope and limitations of a, b and x

        For statement image43.png to be true two conditions have to be met:

1) a, b, x > 0

2) a, b ≠ 1

Explain how you arrived at your general statement

        I arrived at my general statement when I was thinking how to write the expression for nth of each sequence in form image00.png. Then I used the two formulas image39.png and image44.png. The series of calculations (and final one presented below) lead to the general statement.


Technology used

  1. For all the calculations:


  1. For all the graphic presentation:

Microsoft Office Word 2007

MathType v. 6.5c


[1] http://m-w.com/dictionary/logarithm

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ��Ө�2:#�(tm)�V�B��Q:"L�"1�I�[0�0�%�b�e�e1/2Â���������]�x �)|N"Y,S|V�V�E�N�O���-R��i�~Õ·jk���Z'��:ƺ�z-�� ��F%�&]���^��Y�Z��l�m�v)�i�:X8�:98;"�����"{xx�����������@��5��W � � b ��S�"1/4 }vY�""��D'�Pb �8�3/4�&"&F&Y& %o�<Km�{0�']-� Y[׳ �����0�����-:|P;�5o3}X�H�Q�cW�o�K��-'/U(S*W(r)P(c)T9(c)Z�y��t�(tm)��5,��1/4�"Χ��6o�1/4p(r)(c)�����-�K��\��6�&�-�Q����ì­n�[ =.1/2...}s���w-�};�x�@d��p죰��j�1/4c4ckO��>���k���[/z'"_�1/4:�:������'w���+g�}�?�<>����"�y���;_j��] Y�]V�*�Mb��{����o686ݶj��w�'%:��>@bP$�s���2* �}#����dq_�}"*�4�?��'Î�-!�1�\�4��U�Í1/2���Û�0�0?I�^�ÐQ�D,A1/4N��7iqYe9 y %E %^eH�� �[ jtj6hUh�����ַ504T3'56�4e0Ú��/Z�XNX Yw�\���Ud-c�@q�s�u-rawŸ.�1/2t��g�W�-/oi ��+�^�Ú���A6�rTF�×��mae��n'�Q��[1E��q*��"s��I&����)WR3�ڦq�}L��8''�m�x��~�\�R E� q�"� �l|?�tl��Z(r)��"x�Z(c)q(tm)]�� Ê"iU N�>y�Ù�Ñ�su����[^4n5 4�\ n9r(c)��-"*��>n'u�tR"ʯ?��ݭr+�����m�~��"����æ"-z g?jy6�S~�4g1/4�Y�Ä4"r/�^%�>�����;...�Wg-g���k>3/4Y����_�K _eV�"4k��O׷�Û�i`�Ԧ��>"...� ��4��E'P��8t!FÓ��'q�� �4|4k�'��st��... G �L��XY_��q�9e�L�)<{yK�.� <��,1/4,��dM�}�$�IyH��@2���r��- � "��Ju��*Ϊ�j��"z�F���-�֦��N�n���>������9�tcYS��K�k�,|,U��VSÖ­6y�^H���=�or�tttq��<�R���Nt��;��Ü����>V6ʴ�E��Æ�� �`-*�:R�&��'iE��>c���Ë×_OhO�M'M�O(r)M�N�L}�� �<N��H�4���ZÏ�7�syenÎ�.y��D�I�+�_-�]�x��X���Â��b$-(�.�.�*�� V��t��<e}��L�٪ê/�X���[�;4�7�3/4��t�y1/2��R��7W�(r)%���;;˺&o� �3/4����w"�k ��� �1/2��O�$fO��<-�{�2~p��y����(tm)S6���:_1/40��|���-v��*�Lp)�Q���#��6v$�4�Q �Q��g���ޱÔ$z`'�a...BG ����Z�71/4(r)���(N"*u Õz�&�U��t'zÂ1��#U�-k�M�^���qÞ¸S��xA|0�~"`M8C�NcG�L$#����gIDRi�Ξ(r)-^'3/4-���#�q?&g3a����YDX(r)��N�E���k9�8�s-�'�zÊ�#��'��Ïo"�K EPW#�H��H���Y�x�D�d�T���������1/4(r)��b��>$�*��(c)}���4�J�n�y�ǡ�jPn��X�$��9�E�� "R�}�m��]��B�(c)

  2. Logarithm Bases Math IA

    How ever, this cannot be used for any log where the base of a times the base of b does not equal c. Also this equation does not work for negative numbers because you cannot take the log of a negative number.

  1. Math Portfolio Type II Gold Medal heights

    value of the parameters in order to find the best fitting graph. One can see from Figure 3.0 that the points from (52, 198) to (80, 225) follow a rather regular pattern and so following the same steps as before using the system of equations one can attain a suitable graph for these points.

  2. IB SL Math Portfolio- Logarithm Bases

    One could also use the "solver" function on a GDC calculator to check their math by simply pressing the "math" key, then pressing "solve". The original statement can be written 2x=8, but in order to input this into the solver function, it needs to be set to zero.

  1. Ib math HL portfolio parabola investigation

    (x2 r2x r3x + r2r3) = a(x-r1) (x2 (r2+r3)x + r2r3) = a(x3 - (r2+r3)x2 + r2r3x r1 x2 + r1(r2+r3)x r1r2r3) = a(x3 - (r1+ r2+r3)x2 + (r1+r2 + r1r3 + r2r3)x - r1r2r3) = ax3 - a(r1+ r2+r3)x2 + a(r1+r2 + r1r3 + r2r3)x - a(r1r2r3)

  2. Math Portfolio: trigonometry investigation (circle trig)

    tan turn out to be positive while the values of sin and cos turn out to be negative. When we put a random angle from quadrant 4, the range of -90<?<0, -7� in trial to verify the conjecture, the value of cos turns out to be positive and the values of sin and tan turn out to be negative.

  1. Artificial Intelligence &amp;amp; Math

    As it is not fair to put so many blameless Australians through such stress, breaches of privacy or to send ISPs bankrupt for the capture of a few cyber criminals, I see the Bill as a disproportional response to the problem of cyber crime and should not be implemented in its current form.

  2. IB Pre-Calculus Logarithm Bases General Information: Logarithms A ...

    "p" is equal to lnb, and "q" is equal to lna from the expression logab=ln a/ln b, where ln stands for natural logarithm. The system of natural logarithms uses the number called "e" as its base. e is the base used in natural logarithms in calculus.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work