• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math SL Portfolio: Matricies

Extracts from this document...

Introduction

Mathematics SL Portfolio Assignment 1

Title: Matrix Powers                                                                                                                           Type 1

1.Consider the matrix M =image00.png

image01.pngCalculate Mnfor n = 2, 3, 4, 5, 10, 20, 50.

M²=image10.png * image10.png= image27.png=image15.png

M³=image15.png*image10.png=image51.png=image02.png

M⁴=image02.png*image10.png=image11.png=image12.png

M⁵=image12.png*image10.png=image13.png=image14.png

M¹⁰=image14.png*image15.png=image16.png=image17.png

M²⁰=image17.png*image15.png=image18.png=image19.png

M⁵⁰=image17.png*image14.png=image20.png= image21.png

  • To obtain the matrices above I multiplied (a*b+b*g), (a*f+b*h), (c*e+d*g), (c*f+d*h)as shown in the general formula seen below

image22.png

Describe in words any pattern you observe.

In the above matrices the pattern I observed is shown in relationship to the exponents and the numbers within the matrix. As the exponent increases consecutively the matrix is in turn multiplied by two.

Use this pattern to find a general expression for the matrix Mnin terms of n.

...read more.

Middle

=image04.png*image23.png= image26.png= image28.pngDeterminant: 1296-784=512

P⁴=image26.png*image23.png=image29.png=image30.pngDeterminant: 18496-14400=4096

P⁵=image29.png*image23.png= image31.pngimage32.pngDeterminant: 278784-246016=32768

=image24.png*image24.png=image06.png=image33.pngDeterminant: 400-256=144

=image06.png*image24.png=image34.png=image35.pngDeterminant: 12544-10816=1728

S⁴=image34.png*image24.png=image36.png=image37.pngDeterminant: 430336-409600=20736

S⁵=image36.png*image24.png= image38.png=image39.png

Determinant: 15241216-14992384=248832

  • To obtain the matrices seen above I used the matrix function on the TI 84 calculator. In order to obtain the discriminate in each problem I used the formula ad –bc such thatimage40.png.

Patterns Found:

The patterns portrayed in matrices Pⁿ and Sⁿ mainly correspond to the coefficient shown in the box and the determinant in each individual series. In the series of Pⁿ, as each exponent progress consecutively the coefficients associated with that particular matrix (in factored form) are multiplied by two (2, 4, 8, and 16). Also, each determinant found in the Pⁿ series is multiplied by 8 as each exponent progress consecutively (64, 512, 4096, 32768). In the Sⁿ

...read more.

Conclusion

image05.png=image07.png

Results for k=(2), n=-(.5) image08.png=image09.png

  • According to the numbers substituted in the problem above, it can be inferred that the scope of the problem is all real numbers and fractions. I have found no limitations that hinder the use of k and n.

5. Explain why your results hold true in general.

Referring back to work shown in question three, my results for these statements hold true because of the amount of times the equations were carried out. Overall, the steadiness of the results for each of the problems ensures the validity of each statement. A wide array of aspects was used to prove these statements true ranging from negative integers to fractions. The patterns seen were also consistent with the results which reinforce the strength of my statements. Therefore, I conclude that my results hold true in general.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ��@?`L3�ܰ, "���%�{Âp4��p\ 7�mp|~O��U@'P,(~"4J e��...rG bP�C�T5�"� u 5��F-���X4#�-��(c)� íF���+��6�z�1/2"�Â1\I��� �$br1%�:L+f�3����bY��XU�� �M�-�Va[�1/2�G��* �c�I�q"pT\.W�k��Ä�fq��$</^o�w�G��%�F|~ ?�� �" "]?B2�(�-�ExH�%l��Dm�#1"�E,#^$ _��H$':ÉL�$�'.'�HoH�4 C�x���41/24�h3/4��d�-ÙG. 7�o'_'��2��Ð��f�VÒ¶Ñ�~�#� ����K�+�"J��n'�@/BoHO�O����J��� ϰ�!��0C#�]�y �"B1��Qr(5"["F� �!�/�>�Z�A�Y&,"("9SS>S3��3...Y��(tm)9��'��4 �E"Å%��(�- -�ܬ����y�Y�X��8���� ���=a����n�-�~�1/2��% �C�Î#'�� �"'�&�/�!�+�Ϲ`. .{(r)T(r)(r)a(r)Un-nS�(�r�[Ü<,<z<!<�<=< 1/4�1/4:1/4�1/4�1/47y?�1���...�� �-�s�������p�hx)HT ,�\���+tA�0AXM8H�T��ð¨ï¿½ï¿½ï¿½'v'yQ6Qs�� �/��b�b�b�b�ű�j��U��"�D�D��CIXRE2X�J�'FJ]*B�Z�(c)4��3/4t���72,2V2�2�2�e...d�e���'�'S- ""��'��[�g�wɯ(H(�*T*<V$+�(f(v(.+I*�+�R�TfT�V> ܯ1/4(c)���rQeAUH�[���S5&5[��jC�u� �n�u �8�+iJk�j6j�k�j�k�j�h hS��jO���x��(tm)��ץ�V�3/4����"Ó���o�l gc�j�f�a�f�k"225:d4bL1v2(r)0~e"`hr�d�T�4մ� cfiv��(c)9���y��'...�E�Å%���e...�[+ "".k��ºï¿½...��M"M�.��|W�(r)-���Ѷ��v�v�v������q`t�rht��h�x�q�I�)�(c)�(tm)��ù�y��ȥ�e�U�5�3/4�[�[�;���1/2�}u���"g="=r=&<E="<���������7���"�'u����c�s�g�����_�ß����\�v@a�| v`Q�B�nPI�b�apE�r�Y�éµï¿½]��C��\�Z�����"�Ð�H�Ȥ�GQ'Q�Q���'�-b,c�b�X�Ø8&$9���&A'�2�{�s��$�����d��1/4�""s(c)�T��1/2�{��3/4I�O;� ����gf�d�f�f�g�B�-d�ef�粯+�;'3gf�� ���1�Oh-8}}0��H�b^y��!�C����K�-�=|�'�#�#GU��:�=ql���B��"�(tm)"뢶b3/4�C�_Ox��[�Tr�"X_:]fU�Q.T~��gEP�"J��-"\'�N(r)U�U���;u�4���?��(tm)<kz��Z���["P�3/4ֹ��9�s uu�u��#�O���4�644r5-1/2_������4�l��qQ���--�K�R��-1/2/O\�1/4�U���k��N�2�-j��'�-ÚÚ§;�:-uZt�wiv�^-�~3/4��"��=Ä���)7W{�z��f�1/2��n��z<`702h98t��;�wn iu�ո�yO�^�}��m��í"�����=T}�1�>�H�QÏ�X߸�����?�y�h�ib�(c)���I��ga�-�'<ß�|�yq�%��'W\��_��n(tm)V(tm)3/4�����[�*S33/43��3/4�9��3/4d�w(r)a^a3/4{�da�����>n,�~b�t���k�51/4�4"�1/41/2r� �-�_�3/4���(r)3/4��mc��w���j�w~����H���Y�)3/4Ùµe��b;|{;�C�� � �r-�Ý�a"���OC!� ��-�d[ZH�VF � ��0 � �Q+�|�f[...

  2. Math Portfolio: trigonometry investigation (circle trig)

    (The curvy scribble looking line.) The graph is reflected across the y axis from the graph so it is coincident with the graph; Therefore, the values of maxima, minima, amplitude, period and frequency are the same as the graph. The frequency is approximately 0.1592 when expressed to radian.

  1. Mathematics (EE): Alhazen's Problem

    (corresponding parts of congruent triangles are congruent) This explains why instead of looking at how one ball must be struck in order for it to strike the other after rebounding off the edge, we can look for an inscribed isosceles triangle whose legs pass through ball A and ball B.

  2. Maths SL Portfolio - Parallels and Parallelograms

    A2, - A2 ? A3, - A4 ? A5, - A5 ?A6, - A1 ?A4, - A2 ?A5, - A3 ?A6 = 7 - A1 ? A2 ? A3, - A4 ? A5 ? A6, = 2 - A1 ?

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    I assume that because the starting amount of the drug at 6 hours is different than the amount of drug starting at zero hours. For a person's body, I think the decay would not be the same rate if the initial amount of drug already in the body is increased.

  2. Artificial Intelligence &amp;amp; Math

    Crime and Security Survey" http://www.auscert.org.au/Information/Auscert_info/2002cs.pdf NEWS ITEM - EXTRACT LAW enforcement agencies are developing interception agreements with large ISPs, as the Federal Government prepares to introduce new laws on data spying. Investigations by The Australian IT have revealed agreements on data surveillance are being developed between large ISPs and organisations

  1. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    In accordance with the above rationale; it would be likely that if an event were held in 1944 as well; the gold medal height would be around 198 centimeters because of athletic events being a low priority in the face of war.

  2. Math SL Fish Production IA

    From the graph, the linear model does not pass through the points between the years 3-6 whereas the quartic model is more consistent as it passes through most of the points throughout the graph. Nevertheless, the linear function model has an advantage because it could estimate the total mass in

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work