• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics IA - Particles

Extracts from this document...


In this investigation I will be studying the case of an infection of particles. I will be looking into, and analyzing, how the particles work when they first enter the body, what effect the response of the immune system has, how medication is delivered and maintained, as well as death and recovery. Furthermore, I will be altering my investigation models to cater to a young child as opposed to an adult.

First I will look at the initial phase of the infection – the part where the particles enter the body and replicate yet none are expelled because the immune system hasn’t responded. To determine how long it will take before the immune system responds I need to create a basic formula:


In this formula, a represents the initial amount of particles and r represents the ratio at which they multiply every 4 hours – just like they are used in sequences. n represents how many times they multiply, which is once every 4 hours.

Considering the case of a young adult male, I presume that he is initially infected with 10,000 particles and that they double every hour. I also presume that the immune system responds when the particle count reaches 1,000,000. Therefore in order

...read more.


÷ 60 = 0.0416)% of the medicine is eliminated every minute. This enables to create the following equation:

D(0.9996240) + D(0.9996239) + … + D(0.99961) + D

This formula helps determine the dosage because D represents the dosage per minute, and multiplying with 0.999583 is the equivalent of removing 0.0416%. This number has a power of 240 because 0.0416% is removed 240 times by the end. For the next dose injected a minute later, this takes place 239 times because it is in the body for 1 minute less. Similarly, the dose injected 1 minute before the end of the 4 hours only has a power of 1 because 0.0416% is only removed one time before the end.

This equation can then be rearranged to put the smallest powers at the beginning and the largest powers at the end but either way I have a geometric sequence. I then use the formula to find the sum of a geometric sequence:

a(rn – 1) ÷ (r – 1) where a is the initial term (D, if the equation is rearranged) and r is the ratio of multiplication (0.9996, if the equation is rearranged) and n is the number of times the ratio is multiplied (240).

This equation must multiply out to 90 so that 90 micrograms are ensured in the system at the end of the four hours. Plugging the values in I get the following:

D(0.9996240 – 1) ÷ (0.9996 – 1) = 90

D(-0.095) ÷ (-0.000416) = 90

D(-0.095) = 90 × (-0.000416) = -0.038

D = (=0.038) ÷ (-0.095) = 0.39 micrograms

...read more.


9 instead of 1012.

I will now explain how I derived the general formula. First I presume that I are just finding a general formula for the time period after the immune system kicks in so I get the following:

{[1,000,000(1.60.25) – 50,000](1.60.25) – 50,000}(1.60.25) – 50,000 …

Opening this up I get the following:

1,000,000(1.60.25)(1.60.25)(1.60.25)–50,000(1.60.25)(1.60.25)–50,000(1.60.25)–50,000 …

For the first part I can immediately make out that the number of (1.60.25) attached to the 1,000,000 are equal to the number of hours passed making it, where n is the number of hours passed:


For the second half we can factorize 50,000 out leaving us with:

X – 50,000{(1.60.25)(1.60.25) + (1.60.25) + 1}

X – 50,000{(1.60.25(2)) + (1.60.25(1)) + (1.60.25(0))}

I then see a geometric equation forming with a being 1 because (1.60.25(0)) = 1 and r being (1.60.25). Using the sum of a geometric formula:

a(rn – 1) ÷ (r – 1)

1[(1.60.25n) – 1] ÷ [(1.60.25) – 1]

From this we can derive the general formula after the immune system kicks in to be:

1,000,000(1.60.25n) – 50,000[(1.60.25n) – 1] ÷ [(1.60.25) – 1])

We  can then use this format to derive a general formula that would work for any numbers:

P(r0.25n) – e[(r0.25n – 1) ÷ (r – 1)]

In this formula P is the starting number of particles (so 10,000 if we start from when he was first affected, or 1,000,000 if we start from when the immune system kicks in). r is the rate of multiplication every 4 hours, and e is the number of particles eliminated from the body every hour. From this formula we can plug in any values for any of the factors and determine the number of particles.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IA- Type 1 The Segments of a Polygon

    The ratio of the sides being 1:3 is illustrated below. The answer retrieved above is 1.31 which when put into a fraction gives a ratio of the bigger hexagon to the inner hexagon being 21:16. The ratio of the sides being 1:4 is illustrated below.

  2. Math Studies I.A

    Tokelau 1,000 69 69000 1000000 4761 Trinidad and Tobago 18,600 75.98 1413228 345960000 5772.9604 Turkey 12,000 72.88 874560 144000000 5311.4944 Turks and Caicos Island 11,500 74.95 861925 132250000 5617.5025 Uganda 1,100 51.75 56925 1210000 2678.0625 United Arab Emirates 40,000 75.69 3027600 1600000000 5728.9761 United States of America 47,000 78.06 3668820

  1. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    The points in contention therefore be 3, 4, 5 and 6 since 1 point, the winning point is fixed in each game. Therefore the probability of winning would be: For 4-0 result. For 4-1 result For 4-2 result For 4-3 result Therefore, the probability of Player C winning the game

  2. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    Nevertheless, I noticed that some shapes (such as polygon 2, 3 and 6) can be considered to have double their number of vertices, if we include the points that go in i.e. the concave lines. This arouses the question: what are vertices?

  1. Crows dropping nuts

    In the following investigation of crows dropping nuts the equations that will be used will consisting of 3 parameters. Whereby they will be labelled a, b, c. Below is an illustration of simple reciprocal function with an explanation of how parameters a, b and c effect the gradient.

  2. A logistic model

    Politicians in the area are anxious to show economic benefits from this project and wish to begin the harvest before the fish population reaches its projected steady state. The biologist is called upon to determine how soon fish may be harvested after the initial introduction of 10,000 fish.

  1. Gold Medal heights IB IA- score 15

    The c value affects the horizontal shift which is calculated after knowing all over variables then solving for c. Lastly, the d value represents the vertical shift, which can be calculated by finding the average point of heights. Algebraically approaching the function Amplitude (a)

  2. SL Math IA: Fishing Rods

    and (8,149) which is not surprising since those were the two values that were used in both data sets when finding the quadratic function. Another new value that was the same as the original was (5,74). All other new data sets have an error of approximately ±2cm.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work