• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics IA - Particles

Extracts from this document...

Introduction

In this investigation I will be studying the case of an infection of particles. I will be looking into, and analyzing, how the particles work when they first enter the body, what effect the response of the immune system has, how medication is delivered and maintained, as well as death and recovery. Furthermore, I will be altering my investigation models to cater to a young child as opposed to an adult.

First I will look at the initial phase of the infection – the part where the particles enter the body and replicate yet none are expelled because the immune system hasn’t responded. To determine how long it will take before the immune system responds I need to create a basic formula:

a(rn)

In this formula, a represents the initial amount of particles and r represents the ratio at which they multiply every 4 hours – just like they are used in sequences. n represents how many times they multiply, which is once every 4 hours.

Considering the case of a young adult male, I presume that he is initially infected with 10,000 particles and that they double every hour. I also presume that the immune system responds when the particle count reaches 1,000,000. Therefore in order

...read more.

Middle

÷ 60 = 0.0416)% of the medicine is eliminated every minute. This enables to create the following equation:

D(0.9996240) + D(0.9996239) + … + D(0.99961) + D

This formula helps determine the dosage because D represents the dosage per minute, and multiplying with 0.999583 is the equivalent of removing 0.0416%. This number has a power of 240 because 0.0416% is removed 240 times by the end. For the next dose injected a minute later, this takes place 239 times because it is in the body for 1 minute less. Similarly, the dose injected 1 minute before the end of the 4 hours only has a power of 1 because 0.0416% is only removed one time before the end.

This equation can then be rearranged to put the smallest powers at the beginning and the largest powers at the end but either way I have a geometric sequence. I then use the formula to find the sum of a geometric sequence:

a(rn – 1) ÷ (r – 1) where a is the initial term (D, if the equation is rearranged) and r is the ratio of multiplication (0.9996, if the equation is rearranged) and n is the number of times the ratio is multiplied (240).

This equation must multiply out to 90 so that 90 micrograms are ensured in the system at the end of the four hours. Plugging the values in I get the following:

D(0.9996240 – 1) ÷ (0.9996 – 1) = 90

D(-0.095) ÷ (-0.000416) = 90

D(-0.095) = 90 × (-0.000416) = -0.038

D = (=0.038) ÷ (-0.095) = 0.39 micrograms

...read more.

Conclusion

9 instead of 1012.

I will now explain how I derived the general formula. First I presume that I are just finding a general formula for the time period after the immune system kicks in so I get the following:

{[1,000,000(1.60.25) – 50,000](1.60.25) – 50,000}(1.60.25) – 50,000 …

Opening this up I get the following:

1,000,000(1.60.25)(1.60.25)(1.60.25)–50,000(1.60.25)(1.60.25)–50,000(1.60.25)–50,000 …

For the first part I can immediately make out that the number of (1.60.25) attached to the 1,000,000 are equal to the number of hours passed making it, where n is the number of hours passed:

1,000,000(1.60.25n)

For the second half we can factorize 50,000 out leaving us with:

X – 50,000{(1.60.25)(1.60.25) + (1.60.25) + 1}

X – 50,000{(1.60.25(2)) + (1.60.25(1)) + (1.60.25(0))}

I then see a geometric equation forming with a being 1 because (1.60.25(0)) = 1 and r being (1.60.25). Using the sum of a geometric formula:

a(rn – 1) ÷ (r – 1)

1[(1.60.25n) – 1] ÷ [(1.60.25) – 1]

From this we can derive the general formula after the immune system kicks in to be:

1,000,000(1.60.25n) – 50,000[(1.60.25n) – 1] ÷ [(1.60.25) – 1])

We  can then use this format to derive a general formula that would work for any numbers:

P(r0.25n) – e[(r0.25n – 1) ÷ (r – 1)]

In this formula P is the starting number of particles (so 10,000 if we start from when he was first affected, or 1,000,000 if we start from when the immune system kicks in). r is the rate of multiplication every 4 hours, and e is the number of particles eliminated from the body every hour. From this formula we can plug in any values for any of the factors and determine the number of particles.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    I assume that because the starting amount of the drug at 6 hours is different than the amount of drug starting at zero hours. For a person's body, I think the decay would not be the same rate if the initial amount of drug already in the body is increased.

  2. Math Studies I.A

    one may say they chose it in random there is always some form of bias. Furthermore, while choosing randomness of selection can result in a sample that doesn't reflect the makeup of population or unlucky error. Stratified sampling is not used because it is difficult to categorise countries based on any characteristics.

  1. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    The points in contention therefore be 3, 4, 5 and 6 since 1 point, the winning point is fixed in each game. Therefore the probability of winning would be: For 4-0 result. For 4-1 result For 4-2 result For 4-3 result Therefore, the probability of Player C winning the game

  2. Math IA - Logan's Logo

    The maximum value is (1.4, 0.9) and the minimum is(-2.0, -3.5). We can now substitute the x-values of these two points into the period equation to find b: TO FIND c: As previously stated, changing the variable c will affect the horizontal shift of the sine curve, so thatare translations to the right, whileare translations to the left.

  1. Modelling the amount of a drug in the bloodstre

    Linear function (ax+b) This is function is probably the simplest to represent this data but it is the most inaccurate way. This graph tends to -? which is incorrect because there is no negative amount in the bloodstream. A best fit line for this non-linear set of data would be one which tends to zero.

  2. Math IA- Type 1 The Segments of a Polygon

    The following puts it into a mathematical equation. = n2 Now moving onto the denominator, the following table helps analyze the situation better. Ratios of sides of squares = 1:n Denominator values of the area ratio of squares 1:2 10 1:3 17 1:4 26 Looking at the values above, one can notice that the difference between denominator values is increasing.

  1. Gold Medal heights IB IA- score 15

    Vertical shift (d) Horizontal shift (c) h = a sin [b (x-c)] +d Sub in all known variables h= 19.5 sin [ (x ? c) ] + 216.5 Take a value of any point and plug it into the equation and solve for c, the decision was taking (1960, 216)

  2. SL Math IA: Fishing Rods

    The best way to find a polynomial function that will pass through all of the original points is to use all of the original points when finding it (oppose to just three or four). If all eight of the points are used and a system of equations is performed using

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work