• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics Internal Assessment: Finding area under a curve

Extracts from this document...

Introduction

Mathematics Internal Assessment: Finding area under a curve

Padma Priya

IBDP- 11-A

Introduction:

In this IA, I will attempt to find the area present below the curve f(x) = image00.png

+3 within the domain [0, 1]. It is generally considered not possible to find the area under a curve due to it not being in the form of a conventional polygon. However, a close approximation of the area is possible. This is done by dividing the curve into a number of polygons.  To achieve this, I will first plot the graph of the function image00.png

+3 within the stated domain and then divide it into a certain number of trapeziums. I shall then calculate the area of each trapezium using technology and add them to come up with the approximate total area of the curve. The process will be repeated with increasing number of trapeziums to increase accuracy to come up with a general solution for any equation f(x) from x=a to x=b using “n” number of trapeziums.

Investigation:

To find the area under the curve f(x) =image01.png

+3 with domain [0,1], I must first plot the function. When graphed, the function looks like this:

image04.png

Case1:  n=2

...read more.

Middle

image06.png

In this figure, the curve f(x) = x2+3 [0, 1] is divided in to 3 trapeziums, namely trap. (ABEF) whose area is 1.02cm2 trap.(BCGE) whose area is 1.09cm2  and trap.(CDHG) whose area is 1.24cm2 . The trapeziums have been drawn at 3.33 cm intervals. As done above, the coordinates of the divided parts have been joined to create the trapeziums. Using the same mathematical process as before, I can estimate the area of the curve by adding the individual areas of the curves.

Therefore, approx. area of the curve f(x) = x2+3 [0, 1]=

 Area(BCGE)+ area(CDHG)+Area(ABEF)= 1.02+ 1.09+1.24= 3.35cm2.

Case3: n=4

Next, I shall divide the curve f(x) = x2+3 [0, 1] into 4 trapeziums, drawing perpendicular lines to the x axis at intervals of 2.5cm. As done above, I shall join the coordinates of the formed trapeziums and find there area. Once graphed, the function looks like this:

image07.png

The trapeziums formed here are trap.(ABFG) with area 0.76cm2, trap. (BCHF) with area 0.79cm2, trap. (CDIH) with area 0.85cm2 and trap. (DEJI) with area 0.95cm2.  

By increasing the number of trapeziums, I have reduced the area between the side of the trapezium and the curve f(x) = x2

...read more.

Conclusion

Therefore,

Area of space beneath a curve when divided into “n” trapeziums=

image02.png

h(f(a)+f(a+m))+image03.png

h(f(a+m)+f(a+m+m))+…………..+image03.png

h(f(b-m)+f(b)), where m= the length of the “x” interval used to divide the curve into trapeziums and the curve has a domain [a,b] This process must be followed till ”n+1” values are obtained for accurate area.

Further simplifying,

Area of the space= image02.png

h(f(a)+2(f(0+m)+…….+2(f(b-m))+ f(b)). When the curve has a domain [a,b].

This formula is applicable for all curves above the “x” axis where trapeziums are made at equal intervals. When trapeziums are drawn at unequal intervals, the area of each trapezium should be found individually and then added to get the total approximate area and the formula cannot be generalized as the value of “m” is different in each case.

Verification:

  1. When n=2, area was found to be 3.37cm2 . Using the obtained formula,

When n=2,

Area=image02.png

×0.5(f(0)+2(f(0.5)+f(1))=

0.25(3+6.5+4)=3.37cm2

  1. When n=4, area was found to be 3.35cm2 . Using the obtained formula,

When n=4,

Area= image02.png

×0.25(f(0)+2(f(0+0.25)+2(f(0+2(0.25))+2(f(0+3(0.25)+ f(1))

= 3.35cm2

  1. When n=5, area was found to be 3.33cm2. using obtained formula,

When n=5,

Area= image02.png

×0.2(f(0)+2(f(0.2+0)+2(f(0+2(0.2))+2(f(0)+3(0.2))+2(0+4(0.2))+f(1))

=3.33cm2

Hence proved.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    $37,100 (2007 est.) $36,200 (2006 est.) note: data are in 2008 US dollars Belize $8,600 (2008 est.) $8,300 (2007 est.) $8,400 (2006 est.) note: data are in 2008 US dollars Benin $1,500 (2008 est.) $1,500 (2007 est.) $1,500 (2006 est.) note: data are in 2008 US dollars Bermuda $69,900 (2004 est.)

  2. Math Studies - IA

    The Chi-squared test can be used to test for this independency. 1. The null hypothesis, H0: The US performance in majors does not affect their performance in the Ryder Cup. The alternative hypothesis, Ha: The US performance in majors affects their performance in the Ryder Cup.

  1. Math IA - Logan's Logo

    The final graph is shown at the left. The small adjustments we made at the end exhibited the error in our calculations to find the curve of best fit. This can, in turn, be attributed to the large uncertainty in obtaining the actual data. Because I was only able to read points off of the graph, smallest of

  2. Mathematics IA - Particles

    99.59 D ? 99.59 - 90 D ? 9.59 I used this equation because I presumed that a dose, D, was added before the 4 hour period begun, then 2.5% was removed every hour, for 4 hours. Now I decide to go into more detail regarding the last point when the victim can take medicine and survive.

  1. Lacsap's Fractions : Internal Assessment

    = Using the general statement above, each element can be found by substituting n for the row number, and r for element number, starting from r = 1 up to r = n - 1 according to the limitations. Using the equation as the sixth row: E6 (1) = ...

  2. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    The data seems scientifically reasonable. It makes sense and there are no unreasonable amounts in the values. The model did show a steeper slope and an excess buildup of leftover drug. I didn't add a line of best fit because there wouldn't be one that would fit all of the data points in a suitable way.

  1. Mathematics Higher Level Internal Assessment Investigating the Sin Curve

    This would mean that all the positive values become negative and all the negative values become positive. To put this into simple terms the graph flips over with respect to the x-axis. Other than flipping over with respect to the x-axis, the graph stretches according to .

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    A linear function approach using the Least Squares approach would be time consuming, but provide a simple line with a non-changing gradient that can be beneficial when additional data is exposed; as it is less likely than others to provide extreme values of data.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work