• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics SL Portfolio Type II Modeling the amount of drug in a bloodstream

Extracts from this document...

Introduction

Mathematics SL

Portfolio

 Type II

Modeling the amount of drug in a bloodstream

                                                                                                                             November 30, 2007


The use of math in life is extremely beneficial; one can know or at least predict what to expect, why to expect it and how to find it. An example of an application of math in life would be medicine; doctors can calculate how much medicine to prescribe and how long it lasts or how long it takes for it to decay, therefore, how often should the patient take it.

In a case for treating Malaria, an initial does of 10 milligrams (μg) of a drug was given and an observation for a total period of 10 hours was done, the amount of drug was measured every half an hour, the results were plotted on the following graph(figure 1):

image02.png

image03.png

As can be seen, this graph shows the rate of the breakdown of the drug in the blood where the amount of drug in the bloodstream decreases with time; they are inversely proportional. In the following table are the numerical results of this observation taken from the previous graph:  

Time in hours

(t/hr)

Amount of drugs in μg

(Q/μg)

0.5

9.0

1.0

8.3

1.5

7.8

2.0

7.2

Time in hours

(t/hr)

Amount of drug in μg

(Q/μg)

2.5

6.7

3.0

6.0

3.5

5.3

4.0

5.0

4.5

4.6

5.0

4.4

5.5

4.0

6.0

3.7

6.5

3.0

7.0

2.8

7.5

2.5

8.0

2.5

8.5

2.1

9.0

1.9

9.5

1.7

10.0

1.5

...read more.

Middle

ec = b1

ec ≈ (0.829)1

c = ln(0.829)

c ≈ -0.2

Therefore, b ≈ e-0.2

And so, f(t) = 10.477e-0.2t where (t) is the time taken for the amount of drug to change in the bloodstream.

The function previously found will help in making a model to predict the change in the amount of drug in the bloodstream over long periods of time without having to expose the patients directly to the drug just in case something might go wrong. The following graph (figure 2) shows the difference between the function for the model and the data plotted in (figure 1) along with its curve-fit to raise the aware of the fact that a model does not 100% apply in real life.

image08.pngimage06.pngimage07.pngimage00.pngimage01.png

image09.png

As shown in (figure 2), the function is accurate enough to be used in making predictions as the curve is close enough to the plotted points and it also crosses the curve-fit at some points as well.

...read more.

Conclusion

image12.pngimage13.png

It can be seen that the drug will completely breakdown after less than 3 days. However, according to the model in (figure 5) below, if the patient continued to take the drug every six hours for a week, the amount of drug will always reach the same maximum amount of 15.0μg and a minimum amount of 4.5μg after a period of 60 hours, this concludes that the rate of decrease of the drug is almost proportional to the amount remaining.

image04.png

image05.png

Using a math application in such a case is greatly useful and helpful in order not to make errors in real life for if a patient, such as in the previous case, was given a wrong does of medication it might cost them their life. This indicates that there are always practical uses for mathematics in life as well as protective ones.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �{��gK -�-�i$�q�_ ßE�O�� �H��bX'������"�Q(r)5j"�1/2n�:���1O�~�i���(nl�5�"�K�$�%�>:w�l�s8\gx�e�L���@�.Ù·o��۷�=ztÛ¶m�d`@w�y' �(�(c)�0�@ *�*"$3/4<j8�?�G�u� Eb�C%[dj��YZ1/4x1��v����*3/4�-h�E���>b�c�Lmz5 "i'��^�q"�$9[�"�Q.<��ΥE)Re,R#Gx�é§N��;�1/4dh��� [qÇ7�x�yt��{��Ͳ1/2C0ТE����=�'�1/27n+�>}�=���L �$�c��...�< �A#��-��Í7�E��\"3/4��I[��0×���6����inB�� \<[�3���]�-%I��ٳ':EÒ (r)CL<�B_m�ZW5d�1/4o�E<-Y��Ν;�m�f���J���R��>�D�%�" �...�bz�\c�`2x/(c)��+����'��...0��-(1I�%�(Î9rΜ9]7n-J�5��% �0�d ���պR�<1 Q �w��]Tl��H�DM�8\j]ÖÚ� a]1��`'$(r)>��"),���-z�m�RX�"C��G�Y��1J�ҪU""�3/4"�(tm)Sxj�e8 ?���<��s�`r-�w�d]�HcRb\-� ����a�(r)8�c��|Q.�Zw�s��W\���gN1�o~�|A�$�7p��Æ9���� .��"if'���!2G:?��#D�4(^F'2���U�è¢ï¿½G�,��!�$���Up'o3/4�& 0-'���� 7v�)�\�vĪ�ִ�gkΜ n��S>��Ø���^��_��,á¡-Â��r^{�5*�P�0yJx��"-?�e...�ӹ(_WM �1�"̱�v*t�/��"(n�1/2{��~�m�"�;�-��%q6�'-9���%...t�B�X���"�M�R��"�Y�?�|3%jM'~��b �/�� t�A0M�#�H�p%�b51���bqqIrW�2M,X��o���� ��...i(tm)J(r)_��W%�Î$~S �)3/4`3/4)O ���Y�t�)���PY� ��&|�"p'�I=��<ꨣL�12�$ï¿½ï¿½Ï ï¿½1o���b"��_~?�;�~(n�y� ��~�9��*x9����?�$F�$B(r)�26l���O)b��((tm)�Y|Ô¨Q�G~�"����I�h1/4L�� 0��N#��q��t��1/4g�-� f�E� �&���kÒ¤I�>��a�V��-�a�֭�E BA?�'2�|�h���(tm)9�'�x���1/2�c�A �PiÖY�kb-LfΜi�B-1/4��s:1/2-T�S��g#�nM �1v ��O�]| �" |��g �xg� �O�'- ����7o-�,l�H3/4��"���g7'S[x���"��v$�`1/4+ :��"�6a^��3/4��FoN���Qd""3z� �q�֭c9&�"�Ce�m f �+�����l@_s����ܹs��{�C���"\q "obl�0a��� �m�С� r�s\�{�-M�1v�� ���O�|\����(r)K�U+�-��l 'S[�r �"�+xÜ|�l'�'�#������t��aO+_ �k�6�x�$'�(c)mzK����BÙ��ۿ5�dE��qÚr PNÈ£e��v\U�2�.

  2. Tide Modeling

    It is also important to notice that they need to be in the same position of the period. For reference it was measure the top two points of the crests, and the two low points of the trough. Once the two points are measure it is necessary to find the difference between the two points.

  1. Math Portfolio Type II Gold Medal heights

    The sin or cosine function for that matter are unsuited, as they are only able to depict discrepancies that occur with a regular pattern. The function of a logarithm seems to provide the most suitable choice. It shows a slow steady slope, that decreases as the x-values grow.

  2. Math Portfolio: trigonometry investigation (circle trig)

    Therefore, the amplitude of y=?sinx and y=?cosx will be the largest value of y and will be given by amplitude= and sets the range of the graph by giving the values of both maxima and the minima. (The curvy scribble looking line.)

  1. Mathematics (EE): Alhazen's Problem

    However given the nature of a hyperbola, intersections with a circle can occur at only one, two, or even three points (if one of the disconnected curves (arms) of the hyperbola is tangent to the circle) - meaning there will not always be four valid solutions on the circular billiard table.

  2. Maths SL Portfolio - Parallels and Parallelograms

    now investigate p for m horizontal lines and n transversals where m, n > 2. --> Consider the diagram below where m = 3 and n = 4. - A1, - A2, - A3, - A4, - A5, - A6 = 6 - A1 ?

  1. Using regression analysis to solve a real time problem

    =3.67 Hence a driver of 25 years of age who maintained his vehicle 4 times and drove at an average speed of 100

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    However, the linear function itself also is not without its weakness that it keeps linearly increasing and does not decrease its gradient; going up towards positive infinity; meaning that one-day should humans could be able to jump over 100 meters high should the trend be true.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work