• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics SL Portfolio Type II Modeling the amount of drug in a bloodstream

Extracts from this document...


Mathematics SL


 Type II

Modeling the amount of drug in a bloodstream

                                                                                                                             November 30, 2007

The use of math in life is extremely beneficial; one can know or at least predict what to expect, why to expect it and how to find it. An example of an application of math in life would be medicine; doctors can calculate how much medicine to prescribe and how long it lasts or how long it takes for it to decay, therefore, how often should the patient take it.

In a case for treating Malaria, an initial does of 10 milligrams (μg) of a drug was given and an observation for a total period of 10 hours was done, the amount of drug was measured every half an hour, the results were plotted on the following graph(figure 1):



As can be seen, this graph shows the rate of the breakdown of the drug in the blood where the amount of drug in the bloodstream decreases with time; they are inversely proportional. In the following table are the numerical results of this observation taken from the previous graph:  

Time in hours


Amount of drugs in μg










Time in hours


Amount of drug in μg


































...read more.


ec = b1

ec ≈ (0.829)1

c = ln(0.829)

c ≈ -0.2

Therefore, b ≈ e-0.2

And so, f(t) = 10.477e-0.2t where (t) is the time taken for the amount of drug to change in the bloodstream.

The function previously found will help in making a model to predict the change in the amount of drug in the bloodstream over long periods of time without having to expose the patients directly to the drug just in case something might go wrong. The following graph (figure 2) shows the difference between the function for the model and the data plotted in (figure 1) along with its curve-fit to raise the aware of the fact that a model does not 100% apply in real life.



As shown in (figure 2), the function is accurate enough to be used in making predictions as the curve is close enough to the plotted points and it also crosses the curve-fit at some points as well.

...read more.



It can be seen that the drug will completely breakdown after less than 3 days. However, according to the model in (figure 5) below, if the patient continued to take the drug every six hours for a week, the amount of drug will always reach the same maximum amount of 15.0μg and a minimum amount of 4.5μg after a period of 60 hours, this concludes that the rate of decrease of the drug is almost proportional to the amount remaining.



Using a math application in such a case is greatly useful and helpful in order not to make errors in real life for if a patient, such as in the previous case, was given a wrong does of medication it might cost them their life. This indicates that there are always practical uses for mathematics in life as well as protective ones.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �{��gK -�-�i$�q�_ ßE�O�� �H��bX'������"�Q(r)5j"�1/2n�:���1O�~�i���(nl�5�"�K�$�%�>:w�l�s8\gx�e�L���@�.Ù·o��۷�=ztÛ¶m�d`@w�y' �(�(c)�0�@ *�*"$3/4<j8�?�G�u� Eb�C%[dj��YZ1/4x1��v����*3/4�-h�E���>b�c�Lmz5 "i'��^�q"�$9[�"�Q.<��ΥE)Re,R#Gx�é§N��;�1/4dh��� [qÇ7�x�yt��{��Ͳ1/2C0ТE����=�'�1/27n+�>}�=���L �$�c��...�< �A#��-��Í7�E��\"3/4��I[��0×���6����inB�� \<[�3���]�-%I��ٳ':EÒ (r)CL<�B_m�ZW5d�1/4o�E<-Y��Ν;�m�f���J���R��>�D�%�" �...�bz�\c�`2x/(c)��+����'��...0��-(1I�%�(Î9rΜ9]7n-J�5��% �0�d ���պR�<1 Q �w��]Tl��H�DM�8\j]ÖÚ� a]1��`'$(r)>��"),���-z�m�RX�"C��G�Y��1J�ҪU""�3/4"�(tm)Sxj�e8 ?���<��s�`r-�w�d]�HcRb\-� ����a�(r)8�c��|Q.�Zw�s��W\���gN1�o~�|A�$�7p��Æ9���� .��"if'���!2G:?��#D�4(^F'2���U�è¢ï¿½G�,��!�$���Up'o3/4�& 0-'���� 7v�)�\�vĪ�ִ�gkΜ n��S>��Ø���^��_��,á¡-Â��r^{�5*�P�0yJx��"-?�e...�ӹ(_WM �1�"̱�v*t�/��"(n�1/2{��~�m�"�;�-��%q6�'-9���%...t�B�X���"�M�R��"�Y�?�|3%jM'~��b �/�� t�A0M�#�H�p%�b51���bqqIrW�2M,X��o���� ��...i(tm)J(r)_��W%�Î$~S �)3/4`3/4)O ���Y�t�)���PY� ��&|�"p'�I=��<ꨣL�12�$ï¿½ï¿½Ï ï¿½1o���b"��_~?�;�~(n�y� ��~�9��*x9����?�$F�$B(r)�26l���O)b��((tm)�Y|Ô¨Q�G~�"����I�h1/4L�� 0��N#��q��t��1/4g�-� f�E� �&���kÒ¤I�>��a�V��-�a�֭�E BA?�'2�|�h���(tm)9�'�x���1/2�c�A �PiÖY�kb-LfΜi�B-1/4��s:1/2-T�S��g#�nM �1v ��O�]| �" |��g �xg� �O�'- ����7o-�,l�H3/4��"���g7'S[x���"��v$�`1/4+ :��"�6a^��3/4��FoN���Qd""3z� �q�֭c9&�"�Ce�m f �+�����l@_s����ܹs��{�C���"\q "obl�0a��� �m�С� r�s\�{�-M�1v�� ���O�|\����(r)K�U+�-��l 'S[�r �"�+xÜ|�l'�'�#������t��aO+_ �k�6�x�$'�(c)mzK����BÙ��ۿ5�dE��qÚr PNÈ£e��v\U�2�.

  2. Tide Modeling

    All of the vales above can also be used for sine since cosine and sine are only a horizontal translation of each other. No transformation would be required because as the graph is half way up it crosses the y- axis and it also happens in the transformed.

  1. Maths SL Portfolio - Parallels and Parallelograms

    A5 ? A6, = 2 - A1 ? A2 ? A4 ? A5, - A2 ? A3 ?A5 ? A6 = 2 - A1 ? A2 ? A3 ? A4 ? A5 ? A6 = 1 --> p = 6 + 7 + 2 + 2 + 1 = 18 From the earlier conclusion, p will also equal 18 if m = 4 and n = 3.

  2. A logistic model

    The model considers an annual harvest of 5 ? 103 fish. The stable fish population is 5.0?104 . The behaviour observed in figure 6.1 resembles an inverse square relationship, and although there is no physical asymptote, the curve appears to approach some y-value, until it actually attains the y- coordinate 5.0?104 .

  1. Math Portfolio Type II Gold Medal heights

    If one takes a rough estimate at the highest point of the graph one would get a result such of (250, 353). Which would imply a height of 3.50 meters in 2146. At first sight this might not seem to be an unachievable value, however the height of one storey of an average house is about 3.00 meters.

  2. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    The only difference is the original data didn't have the line of best fit on it. It still contains the same data points and scale. The r2 or the coefficient of determination displays how closely my model fits the data.

  1. Math SL Circle Portfolio. The aim of this task is to investigate positions ...

    We know that = the radius of . The point O lies on the origin, so its coordinates would be O(0, 0). However, point A is unknown, so variables, (a, b), will be substituted for its values. = radius of .

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    There were certain times in the data where there were significant fluctuations, such as the 1904 Olympics, where the record was 10-11 centimeters less than the previous and the post-Olympics (1896 / 1908). This would be considered an outlier in the data.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work