• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Maths IA. In this task I am asked to investigate the positions of points in intersecting circles.

Extracts from this document...



In this task I am asked to investigate the positions of points in intersecting circles.


Circle C1 has the midpoint of “O”, its radius crosses the midpoint of circle C3 which is “A”. Circle C2 crosses both points O and A which means they are both equal as they are the radiuses of circle C2, with the midpoint being “P”. All three circles are located on a diagonal line which holds the points of O, P’ and P, and is represented by the x-axis on the diagram above.


The distance from O to A depends on the radius of either C1 or C3, (it doesn’t matter which one because they are both of equal size). The distance from O to P is the same as the distance from A to P. The three points (A, O and P) form an isosceles triangle meaning that angles O and A will have the same angle size, as well as O to P and A to P having the same side length.


Because of the three points I am able to make a triangle (mentioned above), yet I have another point which is P’. Drawing a line from A to P’ I am able to divide the triangle into two forming another (smaller) isosceles triangle. Now the angles of sides O and P’ will be equal, as well as the side lengths of O to A and P’ to A.

Provided that r=1, I need to find the values of O to P’ when OP=2, OP=3 and OP=4.

...read more.




         A = 180 – 82.8 – 82.


         A = 14.4image04.png


     O = 82.8image04.png






O to P’ = 0 .25

General statement

Using the three different values for O to P (OP=2, OP=3, and OP=4) I was able to come up with a general statement as I saw a pattern developing in my results for the distance from O to P’. Each time that the length of O to P increased the fraction decreased:

When, O to P = 2 image26.png

   cosO = image27.png

When, O to P = 3     image12.png

   cosO = image28.png

Each time that the value of O to P is increased the fraction decreases because the denominator increases each time while the numerator stays the same.

The lower the fraction that I image29.png

 , the larger the angle becomes:

O = image05.png

  O = 75.5image04.png


   O = 80.4image04.png

And so on…

This pattern continues as I keep increasing the distance from O to P.

As the side length O to P increases the side length of O to P’ decreases:

OP = 2 is 0.501 for OP’

OP = 3 is 0.334 for OP’

OP = 4 is 0.25 for OP’

From finding out more and more results I started to see a pattern, the numerator of the fraction stays the same. The numerator of the fractions above is 1, the radius is also 1.


 , image28.png

, image30.png

, image31.png


Then I looked at the values of O to P that were increasing.

I took the radius and divided it by the length of OP:


Now to test this on a real example I will use OP = 2, OP = 3, and OP = 4.


 =0.5          image35.png

=0.333     image27.png


This method gives an accurate enough measurement of the length of the side O to P’.








...read more.



 as image54.png

 will still be 1.

Testing the validity of the general statement

Find O to P’ when r=1, OP=6 and OP=7        Find O to P’ when OP=2 and r=6

OP’ = image55.png

 = 0.167 therefore O to P’ is 0.167.        OP’ = image56.png

 = 18 therefore O to P’ is 18.

OP’ = image57.png

 = 0.143 therefore O to P’ is 0.143.

The limitations of the general statement

When using cosine and sine to figure out the angles and side lengths the calculator gives of more numbers. I put those numbers to three significant figures cutting of the rest. Yet when I use the general statement formula the numbers I am given are more basic which could result in a small, (not very significant) calculation error. Apart from that I found my general statement to work well in solving these problems.

Explaining how I arrived at the general statement

From looking at my results for the first problem I created a general statement formula. I noticed that the radius stayed the same so I placed it on top of my equation and divided it by the distance from O to P giving my length of O to P’

Although when I reached the second problem the general statement did not work therefore it meant that I would have to modify it somehow to make it work. I squared the radius and divided it by the length O to P.

When I looked back on the first problem the modified general statement formula worked, as squaring 1 (image54.png

) will still give me 1 therefore not changing the values I received through the use of technology through sine and cosine.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    This form of GDP is used because... overall life expectancy rather than life expectancy at birth is used because... One can see that the outliers of life expectancy 30-50 years old are usually from the developing countries such as Afghanistan, Zimbabwe, Rwanda, Ethiopia, Namibia, Niger, Nigeria and South Africa are of some trouble.

  2. Math Studies - IA

    Eleven out of twelve players participated, hence: A tournament consists of four rounds: The tables on the next page summarizes all the information obtained using this method. No computations were required for the results of the Ryder Cup. A sample of the data (one tournament)

  1. Math IA - Logan's Logo

    This gives us a final equation for the top curve to be: Now we just need to restrict the domain and range to the parameters we set at the beginning of the investigation. The final graph is shown at the left.

  2. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    The formula for the expected value is: Expectation = Where n is the number of trials, therefore in this case it is the number of points played which will be 10]. p represents the probability of the event occurring and will be since we want to find the expected value for how many points Adam wins.

  1. Mathematics (EE): Alhazen's Problem

    To begin this investigation one should first consider where and how many possibilities there can be on a circular pool table that would allow for a ball to strike once off the edge and then hit another ball. Moreover, what exactly characterizes the direction of a ball bouncing off a circular table border?

  2. Mathematic SL IA -Circles (scored 17 out of 20)

    = 8 – 7 = 1 The answer matches to my predicted value of OP’. Thus, for this condition, the general statement is valid. 1. OP=3, r=4 Link AP’ is an isosceles triangle. is an isosceles triangle. As the Cosine Rule, âµ ∴ = ∴ = 16 + 16 – 32 ()

  1. Gold Medal heights IB IA- score 15

    Through mathematical calculation, the parameters of the sinusoidal function had been calculated to represent the first set of data. This causes the model to solely represent the primary data and the model will not effectively accommodate with any additional data.

  2. MATH Lacsap's Fractions IA

    b= 2 ? 1.5 b = 0.5 Now, by combining the values of a and b, we can derive a general statement for the nth term of the numerator (where n is the row number) : To prove the validity of this statement, I will use the 5th row with 15 as the numerator number (n): N = 0.5(5)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work