Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16

Maths Portfolio Shady Areas

Extracts from this essay...

Introduction

Shady Areas Standard Level Name Anis Mebarek Candidate Number: Shady areas: We are able to find the area under the graph through calculating the area of the trapeziums under it. Through having numerous trapeziums under the curve the amount of uncertainty within the answer decreases this is due to the uncalculated area decreasing. I will be investigating and proving this theory from using the function and to find out the area of the trapezium I will use this formula . As seen from the graph the area between the curve and the trapezium is also being calculated when trying to find the area under the line therefore we are expected to get a higher number then the area it's self. But increasing the number of trapeziums on the graph from 1 to 2, the uncertainty for area decreases. This can be seen from the graph below. Therefore through increasing the number of trapeziums within the graph the uncertainty of the answer will decreases and so will the number for the area will decrease, as the trapeziums will over-estimate the number for the area. To prove this I will have to calculate the actual area under the curve through using integration. I will use the area that I have calculated through integration to prove that the trapezium rule works or gets very close to the actual number.

Middle

Therefore it's basically just plugging in the numbers into the equation above, for example for you will have to find that length therefore you plug the 0.2 into the given equation, for this example it's, when we find the number of that X co-ordinate we can then plug it into the equation, and repeat the process with the other lengths. But his is not a general formula, where I will have to change the to and the different x axis sides, where the will be used, which will give me this formula: To simplify this equation I will simplify one part of it as it correlates towards the rest, as to use that part as an example: Therefore we are able to factorize this equation as 1/2 and h as repeated throughout the equation which will give us this: This is still not a general explanation to the formula, as its still focused on one example, therefore to change this example so that it can be used with any number of trapeziums, we have to change the height as it has to correlate with the length of the x-axis and the number of times that x-axis will be split. Simply we are able to change h to where "b-a" will give us that length of the x-axis where they want to measure the area from, essentially the upper and the lower limits of their search for the area.

Conclusion

Where I pressed Y=(placed in the equation), pressed graph, then second function trace, 7: , selected the lower limit to be 1, and the upper limit to be 3, then pressed enter to find the area between the limits. Area Y= Trapezium Integration Difference 0.0007 0.1335 0.0205 The trapezium rule came to a close proximity with its approximations, with only small differences between the actual area, and the estimation. Though increasing the number of trapeziums used within the equation would increases the accuracy of the answers. The scope and limitations: The way that the rule will be limited or even not work is through the sin curves, as they fluctuate between the x-axis, the areas calculated will be difficult to do, as the sides of the graph go from a positive number, to a negative, therefore canceling each other out. Another limitation to the rule is when the graph is irregular, and then the uncertainty or the over/underestimations from the rule will increase as the irregular curves create difficulty in estimating the curving parts of the graphs. Even through increasing the number of trapeziums within the graph the uncertainty is still great. Another limitation is an isotope, where the line does not touch the axis, therefore makes it difficult to calculate the lengths for the trapeziums. Which makes it impossible to do, but if it's done then the uncertainty for the area found will be high. ?? ?? ?? ??

The above preview is unformatted text

Found what you're looking for?

  • Start learning 29% faster today
  • Over 150,000 essays available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Over 180,000 student essays
  • Every subject and level covered
  • Thousands of essays marked by teachers
  • Over 180,000 essays
    written by students
  • Annotated by
    experienced teachers
  • Ideas and feedback to write
    your own great essays

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.