• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24

Maths portfolio Type- 2 Modeling a function building

Extracts from this document...


Math’s portfolio

Type- 2

Modeling a function building

Topic question –

According to the condition provided the height of the building should be in between 50% to 75% of the given width 72 meters and that should be in the range of 36 to 54 meters.

So to start off with I will design the structure with the minimum height and width of 36 and 72 meters respectively and then I will use the general parabola equation which is

y= ax2+bx+c.

As shown in the figure the coordinate of the left x intercept corner, the right corner’s x intercept the vertex of the parabola is (0, 0), (72, 0) and (36, 36) respectively. Since we have all these coordinates we will now form three equation by substituting all of them in the above equation y= ax2+bx+c.

That will give us these results:-

Equation – 1

When x =0 then y =0

Thus 0 = a x 02 + b x 0 + c

Therefore c = 0

Equation - 2

When x = 72 then y = 0 thus

0=5 184a+72b

So a= -72b/5184

Equation – 3

When x = 36 then y = 36

1296a + 36b = 36

Since we know that a= -72b/5184 now i will replace b with this term and find out the values of ‘a’ and ‘b’. Now the equation will look like 1296(-72b/5184) + 36b=36.Thus after using the calculator I get that

b = 2, a = -0.03 and c = 0

y =image35.gif.



Now I am going to find the dimensions of the cuboid with maximum volume which would fit inside this roof structure.

...read more.


(X of B)


(36-x)2 + image10.png


= image12.png


=  image12.png

[(36-x)2- 2592+72x]

= image12.png


h =image11.png

[1296 - x2]

Volume=width × height × length

=2x ×[image11.png

(1296 - x2)] ×150

= 150[image14.png

(1296x – x3)]

Now in order to get the value of V we must first differentiate 150[image14.png

(1296x – x3)] and equate it to 0.

So the differentiation of 150[image14.png

(1296x – x3)] = 1296-3x2 = 0

Therefore x =±20.78m

Again the above value represents either maxima or minima thus again we will have to check wether the answer is + or – and to do this I will differentiate- 3x2= 1296. Which is = 20.78m. therefore the cuboids width=2x 20.78 that = 41.56m

As we can see that the width of this cuboid and the one with the height of 36 m is just the same I can conclude that the width does not change with the change in its height

Now using h =image11.png

[1296 - x2]  we will find the height of the cuboid .

Using my calculator I get an answer of 0.67h.

So it is clear that the length and width have nothing to do with the increase in the volume of the cuboid and the only thing affecting the volume is the height therefore I have prepared a chart which varies from 50 to 75 percent of 72 m which is beginning with 36 and ending with 54 meters.


Now I will calculate the ratio of the volume of the wasted space to the volume of the office block for each height above.

...read more.


Now I will check the maximum amount of space that can be covered in a structure with the height of 36m and length of 150m.

As the cuboids height is fixed as 2.5m now we will find the width and the volume of the lowest cuboid in the structure by using y = image33.png

x2 + 2x .which is equivalent to 2.5= image33.png

x2 + 2x.Thus after solving this quadratic it we will get x as 1.27, 70.73.

Therefore the base cuboids width = 70.73-1.27=69.46m

And its volume = 150×69.46×2.5=26046m3

As we advance upwards we will have to keep adding the height of the cuboids 2.5m until we reach the total height of 35 as at that time we will have 14 floors

Thus when y = 35 the equation formed will be similar to the one used in the above example thus it will look like this 35= image33.png

x2 + 2x and it will be equivalent to x2-72x+1260=0

Thus after solving this quadtric equation we will get x as 30 and 42.

Therefore the width of the base = 42m-30m = 12m and the volume will be equal to 150×12×2.5=4500m3


Thus the Total volume of all the cuboids calculated was =246386m3

For the height of 36m the volume of the structure is= 7200h

= 7200×36=259200m3

Therefore the amount of space Wasted = 259200-246386=12814m3


 this is the ratio of the space wasted with the total space

Thus I would conclude by saying that the amount of space wasted with having just a single cubeoid was 0.72.Whereas if we used the above technique we will save more space compared to the previous technique thus it is ethical and economical.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    .�U1/2���m3�^�(r)d�� B��3/4�r�-U��'��Y��~M~���...c���_�k�E(r)�K��3/48�� �...a�$�gP,c"���]{L�1/42m(r)�7�/�e*Ñ1/2��N�-'��"4_ ]è¶ï¿½ï¿½ï¿½uMC�V-��.>%�W3/4ψ�<'�)[ǯ"� �[�"�����/��V��׺���R�#�4��g�N����- hzf�sh�e���_i]�ZYAous1/4�""�<o*}����k�>�iwH�P@P@P@P@P@P@P@���(p�g��7���:k"�Qt����d'����e��"�B�?�:('_���Z×��H� �:N���3 ���z���...��1/4w6-C �(r)h�����"�Gq� ����ωto|6: �-"��v�>Gi�4���W�>x1/4=q�_�/��> ��K{(tm)t�~%�u4���N��g����P�|"����d�����*�O /���\�;����O ^b��77V>(�~6�x?]������<[6�'�J H���x�� �3/4k-63/4��3/4 �+�ß|W�\E{�<|J�Y�:f�"�v?���T�� 84�N�[I�[�r�T�� 3N��@9�|���Mc"�x[â·ï¿½U�|f��Ïoa�1/4!qq�~�v>�5��-��&(c)�?��e��{�L��~(�}>��-M`� |�"1/4!�Å|}�x��W��^...k�(tm)ur,�;�o���֥��s�-3/4 }?ZÕµO...3/47�i"�vz6(c)>��m^+�N{{T�Ö>b�����Ï��'�@�k�HO���"�è.5"���tÏ�w�5"-��w��G�*� a�ج�&��@����5y�1/40�d�B��~��~>!�...����r����"����m�SO���-ã·ï¿½ï¿½"�F���Wox�� 1/4]�s��~"""� �7�5]G�3/4"�R�N]H�wm]��7)l|�A$�NH' Rz�� � ( � ( � ( � ( � ( � ( � ( � �^����C��?��3/4���\ � �u��!?��no�/?

  2. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    The closer is to 1, the more accurate the function is. Now, to find this function algebraically. Method 2. Finding the function at : To determine the function in Fig 1 above algebraically, sub in into ? The function is: To show that is true: According to Graph in Fig 1, and ?

  1. Tide Modeling

    It is also important to notice that they need to be in the same position of the period. For reference it was measure the top two points of the crests, and the two low points of the trough. Once the two points are measure it is necessary to find the difference between the two points.

  2. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    We can use the following formula to calculate r2: Explained Variance True Variance OR The closer the value it is to 1.00, the more suitable the line is for the graph. I just used the Excel program to calculate the r2 value for me.

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    Example 3 [In red] [In purple] In green] From this example I can see that D would equal the absolute value of the different of the slopes of the intersecting lines divided by the absolute value of a rather than only the difference of the slopes over the absolute value of a.

  2. High Jump Gold Medals Portfolio Type 2 Math

    It is likely that the steep gradient of the portion of the data I first analyzed (1932-1980) marked a period of rapid technological advances in sports technology and technique as many technological advances were made during this time. This means that using a logarithmic function is not an appropriate model

  1. In this investigation, I will be modeling the revenue (income) that a firm can ...

    In order to do so, we need to locate the price and quantity, which maximized revenue on the demand curve. In relation to quadratic functions (y= ax2 + bx + c) the easiest way to locate the highest or lowest points of a parabolic graph is to locate the vertex.

  2. Gold Medal Heights Maths Portfolio.

    Since we know that the d-value is 250, Since this function has three variables, three points must be chosen. To determine the first point, the first four data points are averaged, then the next four points are averaged to find the second point and finally, the last three data points are averaged to find the third point.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work