• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7

# Maths SL Portfolio - Parallels and Parallelograms

Extracts from this document...

Introduction

IB Standard Level Maths: Portfolio Piece 1

Parallels and Parallelograms

Table of Results for 4 transversals:

 Transversals Number of Parallelograms Parallelograms Diagram 4 6 A1, A2, A3A1 ∪ A2, A2∪ A3A1∪ A2∪ A3 Table of Results for 5, 6 and 7 transversals: 5 10 A1, A2, A3, A4A1 ∪ A2, A2∪ A3, A3 ∪ A4A1∪ A2∪ A3 , A2∪ A3∪ A4A1∪ A2∪ A3  ∪A4 6 15 A1, A2, A3, A4, A5A1 ∪ A2, A2∪ A3, A3 ∪ A4, A4∪ A5A1∪ A2∪ A3 , A2∪ A3∪ A4, A3∪ A4∪ A5A1∪ A2∪ A3  ∪A4,  A2∪ A3∪ A4  ∪A5A1∪ A2∪ A3  ∪A4 ∪A5 7 21 A1, A2, A3, A4, A5, A6A1 ∪ A2, A2∪ A3, A3 ∪ A4, A4∪ A5, A5∪A6A1∪ A2∪ A3 , A2∪ A3∪ A4, A3∪ A4∪ A5,  A4∪A5 ∪A6A1∪ A2∪ A3  ∪A4,  A2∪ A3∪ A4  ∪A5,  A3∪ A4∪ A5  ∪A6A1∪ A2∪ A3  ∪A4 ∪A5,  A2∪ A3∪ A4  ∪A5 ∪A6A1∪ A2∪ A3  ∪A4 ∪A5 ∪A6

Let n = number of transversals and letp = number of parallelograms

 Transversals (n) Parallelograms (p) 2 1 3 3 (1 + 2) 4 6 (1 + 2 + 3) 5 10 (1 + 2 + 3 + 4) 6 15 (1 + 2 + 3 + 4 + 5) 7 21 (1 + 2 + 3 + 4 + 5 + 6) n 1 + 2 + … + (n – 1)

Use of Technology:

Using the TI – 84 Plus, press STAT 1: Edit.

Type in L1, L2:         (2, 1)

(3, 3)

(4, 6)

…etc.

Middle

A3 A4  A5 A6, A3 A4 A5  A6 A7,A4 A5 A6  A7 A8, A5 A6 A7  A8 A9

= 5

• A1 A2 A3  A4 A5 A6,
• A2 A3 A4  A5 A6 A7,
• A3 A4 A5  A6 A7 A8,
• A4 A5 A6  A7 A8 A9

= 4

• A1 A2 A3  A4 A5 A6 A7,
• A2 A3 A4  A5 A6 A7 A8,
• A3 A4 A5  A6 A7 A8 A9

= 3

• A1 A2 A3  A4 A5 A6 A7A8,
• A2 A3 A4  A5 A6 A7 A8A9

= 2

•  A2 A3  A4 A5 A6 A7A8 A9

= 1

45

p = sum of all integers from 1 to (10 – 1)

= sum of all integers from 1 to 9

= 1 + 2 +3 + 4 + 5 + 6+ 7 + 8 + 9

= 45

p = (n2 – n) ÷ 2

p= 102 – 10 ÷ 2

= 90 ÷ 2

= 45

Let m = number of horizontal lines

If there are three horizontal lines, intersecting two transversals (m = 3, n = 2) then p = 3. Similarly, if there are three transversals, and two horizontal lines, (m= 2, n = 3), then we also obtain p= 3.

Conclusion:

Hence, m horizontal lines and n transversals produce the same amount of parallelograms as n horizontal lines and m transversals.

General Statement:

If there are m horizontal lines, and two transversals, then p = sum of all integers from 1 to (m – 1). Note that this rule is identical to the above investigation of n transversals and two horizontal lines.

Test of Validity for m = 10, n = 2

We will now prove that if m = 10, where n = 2, we will get the same p value of 45 as example 1 above where m = 2 and n = 10.

e.g. 2) 10 horizontal lines, 2 transversals

Manual method:

• A1,
• A2,
• A3,
• A4,
• A5,
• A6,
• A7,
• A8,
• A9

= 9

• A1 ∪ A2,
• A2 A3,
• A3 ∪ A4,
• A4 A5,
• A5A6,
• A6A7,
• A7A8,
• A8A9

= 8

• A1 A2 A3,
• A2 A3 A4,
• A3 A4 A5,
• A4 A5 A6,
• A5 A6 A7,
• A6 A7 A8,
• A7 A8 A9,

= 7

• A1 A2 A3  A4,
• A2 A3 A4  A5,
• A3 A4 A5  A6,
• A4 A5 A6  A7,
• A5 A6 A7  A8,
• A6 A7 A8  A9

= 6

• A1 A2 A3  A4 A5,
• A2 A3 A4  A5 A6,
• A3 A4 A5  A6 A7,
• A4 A5 A6  A7 A8,
• A5 A6 A7  A8 A9

= 5

• A1 A2 A3  A4 A5 A6,
• A2 A3 A4  A5 A6 A7,
• A3 A4 A5  A6 A7 A8,
• A4 A5 A6  A7 A8 A9

Conclusion

m horizontal lines, and n transversals, the resultant value of p equals the product of p1and p2, where;

p1 = number of parallelograms for m horizontal lines and two transversals

p2 = number of parallelograms for 2 horizontal lines and n transversals.

Hence, for any diagram with m horizontal lines and n transversals,

Test of validity for m = 4, n = 3

• A1,
• A2,
• A3,
• A4,
• A5,
• A6

= 6

• A1 ∪ A2,
• A2 A3,
• A4 A5,
• A5A6,
• A1 A4,
• A2 A5,
• A3 A6

= 7

• A1 A2 A3,
• A4A5 A6

= 2

• A1 A2A4 A5,
• A2A3 A5 A6

= 2

• A1 A2 A3  A4 A5 A6

= 1

p=6 + 7 + 2 + 2 + 1

= 18

p = ½ m (m – 1) x ½ n (n – 1)

= ½ 4 (4 – 1) x ½ 3 (3 – 1)

= 6 x 3

= 18

Scope/limitations:

The formula will be valid for m, n ≥ 2. If either value were to be 1 or 0, it would be impossible to create any parallelograms.

Explanation of generalisation:

A diagram with m horizontal lines and 2 transversals creates p1parallelograms.

A diagram with 2 horizontal lines and n transversals creates p2parallelograms.

It follows that if a diagram were created, with m horizontal lines, and n transversals, we would be able to fit p1parallelograms vertically and p2 parallelograms horizontally, giving us a total of p1 x p2 parallelograms.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Maths essays

1. ## Math IB SL BMI Portfolio

causing the BMI value of height to remain constant after 20 years of age but the value of weight to keep on increasing until a separate plateau - adult weight, is reached. Therefore, the BMI value would not remain constant after � 20 years of age and it will keep on increasing until both adult height and weight is reached.

2. ## Math SL Circle Portfolio. The aim of this task is to investigate positions ...

O(0, 0), P'(2,0) = = 2 ? = 2, r= 2, = 2 The following graph displayed is when 2, r= 2. Through the same method of calculation as the above, . Using the same method of calculation, the following chart was established r . ' 1 2 2 2 = 2 3 2 4 2 =

1. ## Mathematics SL Parellels and Parallelograms. This task will consider the number of parallelograms formed ...

Second difference between terms 3 2 3 3 x 1 3 3 9 3 x 3 2 6 3 4 18 3 x 6 3 9 3 3 5 30 3 x 10 4 12 3 3 6 45 3 x 15 5 15 3 3 7 63 3 x

2. ## Music and Maths Investigation. Sine waves and harmony on the piano.

Next, the probability that we play the correct middle note for the chord. This time there are 2 valid notes since there are minor and major variations of each chord. Also since we have already played the base note, we now can only choose from 11 notes.

1. ## Gold Medal Heights Maths Portfolio.

To find the points for 1940 and 1944, a graph with a dip is necessary. Since World War 2 occurred throughout 1940 and 1944, the expected values would be lower than 1936 and 1948 due to rationing of food, casualties, loss of practice etc. which would thereby produce a dip.

2. ## Math SL Fish Production IA

Rearranged Years (x) Substituting the x and y values 3 557.3=a34+b33+c32+d3+426.8 4 564.7=a44+b43+c42+d4+426.8 5 575.4=a54+b53+c52+d5+426.8 6 579.8=a64+b63+c62+d6+426.8 Table 4: This shows the rearranged years and the simplified equation of table 3. Rearranged Years (x) Substituting the x and y values 3 81a+27b+9c+3d=130.5 4 256a+64b+16c+4d=137.9 5 625a+125b+25c+5d=148.6 6 1296a+216b+36c+6d=153 These equations

1. ## Parallels and Parallelograms Maths Investigation.

A2 á´ A5 , A2 á´ A6, A3 á´ A4, A3 á´ A5, A3 á´ A6, A4 á´ A5, A4 á´ A6, A5 á´ A6. Adding a seventh transversals gives us a total of twenty-one parallelograms. Transversals Parallelograms 2 1 3 3 4 6 5 10 6 15 7 21

2. ## High Jump Gold Medal Heights Type 2 Maths Portfolio

seem to deviate away from the line of best fit by quite a large amount. By using the coordinates of two points whom this best fit line passes through (E and G), the equation of the line of best fit was found.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to