• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Matrices Portfolio

Extracts from this document...

Introduction

Matrix powers

A matrix is a rectangular array of numbers (or letters) arranged in rows and columns. These numbers (or letters) are known as entries. Entries can be added and multiplied, but also squared. The aim of this portfolio is to investigate squaring matrices.

When we square the matrix M = image00.pngimage00.png what we receive is a) image40.pngimage40.png = image51.pngimage51.png = image61.pngimage61.png.

Calculating the matrices for n = 3, 4, 5, 10, 20 and 50:

image71.pngimage71.png= image01.pngimage01.png

image13.pngimage13.png= image24.pngimage24.png

image35.pngimage35.png= image39.pngimage39.png

image41.pngimage41.png= image42.pngimage42.png

image43.pngimage43.png= image44.pngimage44.png

image45.pngimage45.png= image46.pngimage46.png

Examples shown above clearly indicate that while zero entries remain the same, non-zero entries change. Each entry is raised to a given power separately. Raising them to any power does not change the zero-entries.

...read more.

Middle

image60.png

These matrices are simplified to 2image56.pngimage56.png and 2image60.pngimage60.png to make it easier to notice any patterns. Calculating Pn and Sn 

...read more.

Conclusion

k and n it occurred, that for greater numbers the pattern was not true. In the case of, e.g. k = 1500 and n = 2, the pattern worked. Increasing n to 3, however, caused all the entries to be the same.

This was also checked for the matrices P and S.

image22.pngimage22.png = image23.pngimage23.png = image25.pngimage25.png = 65536image26.pngimage26.png

image27.pngimage27.png = image28.pngimage28.png = image29.pngimage29.png

image30.pngimage30.png = image31.pngimage31.png = image32.pngimage32.png = 4096image33.pngimage33.png

image34.pngimage34.png = image36.pngimage36.png = image37.pngimage37.png

The pattern works as long as the results are less than 10 billions. If they exceed this number, all the entries will be exactly the same.

image38.pngimage38.png 10 000 000 000

Therefore, this does not seem to be true for every number.

The results hold true in general because in real life situations so large numbers are not frequently used. For smaller numbers the pattern fits thoroughly.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IA binomials portfolio. As we can see, a general trend emerges as we ...

    We can find an expression for Yn in a similar fashion. , where Un=a specific term a=first term r=common ratio (multiplier between the entries of the geometric sequence) n=the number of the specific term (with relation to the rest of the sequence). For Yn: When n=1, 2, 3, 4, ...

  2. Math Portfolio: trigonometry investigation (circle trig)

    again with 9 coordinates. Upon the analysis of the pattern of the graph, As the value of ? increases from - to -, cos? goes from 1 to 0. As the value of ? increases from - to -, cos? goes from 0 to -1. As the value of ?

  1. I.B. Maths portfolio type 1 Matrices

    Therefore the general expression of Mn = is valid. QUESTION 2 Consider the matrices P = and S =. P2 = = = 2; S2 = = = 2 Calculate Pn and Sn for other values of n and describe any pattern(s)

  2. Math portfolio: Modeling a functional building The task is to design a roof ...

    to "v" and then equate to zero =150[(1296v - v3)]=0 Therefore 1296-3v2=0 -3V2=-1296 V=�20.78m This value can be maxima or minima hence I will differentiate the equation (8) again and check whether the result is positive or negative. =(-6V)=-124.68 As the above value is negative, hence the value of "v"20.78 is for largest cuboid.

  1. Maths Project. Statistical Analysis of GCSE results at my secondary school summer 2010 ...

    9 40 m 40 28 Sw 9 40 m 40 27 Sz 10 40 m 40 26 Te 10 40 f 40 25 Th 10 40 m 40 24 Ti 11 40 f 40 23 To 10 40 f 40 22 To 10 40 f 40 21 Tu 10 46

  2. Math HL portfolio

    B has to be smaller than zero in mathematical terms b<0 For example see the same quadratic equation just the variable b is changed Y= x�-4x+5 (a=1, b= -4, c=5) And Y= x�+4x+5 (a=1, b= 4, c=5) The Vertex of the first quadratic lies in the First Quadrant You can

  1. Math 20 Portfolio: Matrix

    As such, it can be modified as being (n/2). After the two modifications, we can rewrite the expression for adding consecutive a hundred positive numbers into the general statement: tn = (n / 2)(n + 1). After simplifying this multiplication of a monomial by a binomial, we get the general statement as: tn = 0.5n2 + 0.5n.

  2. Math Portfolio Type II

    = (10000, 1.5) which is equal to (x1, y1). Substituting all these values in the general linear equation, we get : - (y - 1.5) = -1 x 10-5(x -10000) y - 1.5 = -1 x 10-5x + 1 x 10-1 y = -1 x 10-5x + 1.6 Here, the variable y can

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work