• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Matrix Binomials IA

Extracts from this document...


Tenzin Zomkey                Maths SL Type 1

Maths Portfolio Standard Level

International Baccalaureate

Matrix Binomials

The main aim of this portfolio is to investigate the matrix binomials and observe and determine a general expression from the patterns that we obtain through the workings. Throughout the project, I shall be using solely matrices of 2 x 2 formations, and investigate the patterns I find.

1. To begin with, we consider the matrices X = image00.pngand Y =image01.png.

The values of these matrices, each raised to the power of 2, 3 and 4 are calculated, as shown below;

X2= image00.pngX image00.png= image43.pngY2 = image01.png x image01.png= image12.png

X3= image43.pngx image00.png= image02.png       and     Y3 = image12.pngx image01.png = image27.png

X4 = image02.pngx image00.png= image30.pngY4 = image27.pngx image31.png = image32.png

It can be observed that all the matrices calculated above are in the form of 2 X 2, they are all square matrices. The corresponding diagonal elements are also observed to be the same. Since the matrices of each nth power can be seen to be the value of 1 less than the nth term, the general expression for the matrix Xn in terms of n is -

Xn = image33.png

And the general expression for Yn is –

Yn = image34.png

...read more.


image48.pngB3= image49.png= image50.png

A4= image51.png= image52.pngB4= image53.png= image54.png

Note: A GCD calculator (TI 83) has been used throughout this portfolio to calculate the matrices and other calculations.

Observing the above calculations, we can detect a certain pattern in determining the values, which gives us the general expression of A and B in terms of n as;

An = image55.png               and                      Bn= image56.png


Taking n to be 4, we substitute the values in the expression of An

A4= image57.png

A4 = image58.png

A4 = image59.png

A4 = image52.png

And since A4 = image52.pngis the correct value as calculated previously, this expression is proven true and consistent.

Likewise, to find the general expression of (A + B) n , the values of (A + B) raised to the powers 2,3 and 4 are calculated;

First, we find the value of (A + B)

(A + B)= image43.png+ image44.png= image60.png

(A + B) 2 = image03.png= image04.png

(A + B) 3 = image05.png= image06.png

(A + B) 4 = image07.png= image08.png

Observing the repeating patterns in the calculations above, we can deduce the general expression of (A+B) in terms of n to be;

(A + B) n = 2 n-1 image09.png


Taking n as 3, and substituting it in the above expression –

(A + B) 3 = 2 3-1 image28.png

(A + B) 3 = 2 2image61.png

(A + B) 3 = 4 image11.png

(A + B) 3 = image06.png

...read more.


n = 2 n-1 image09.pngwhereby a=2, b= -2, and taking n=3, we calculate (A+B) raised to the third power –

(A+B)3 = 23-1 image10.png

                 = 22 image11.png

                  = 4 image11.png

                    = image06.png

So since we know from previous calculations that M3= image06.png, we can say that , M3= (A+B)3 .

Therefore, the general statement of Mnin terms of aX and bY is;

Mn= (aX+bY)n


To check the validity of this general statement, we shall take different values for a, b and n. Suppose a= 3, b=4, and n= 2 –

M2= (3X+4Y)2

M2= image13.png

M2= image14.png

M2= image15.png

M2= image16.png

And since M = (A+B) = (aX+bY),

M = image17.png

M = image18.png

So then,

M2= image15.png= image16.png

Therefore, the statement is proven true and consistent with all values of a, b and n.

5.  Using the Algebraic method, the general statement is to be verified and explained again.

Taking the expression, Mn =2 n-1 image09.png, we find:

M = image19.png

M2= image20.png= 2image21.png

M3=  image22.png

 = 2 image23.png

= 2image24.png

= 2image25.png



Substituting the above with the initial values of a and b, we find M3 -

M3= 4 image26.png

M3 = 4 image28.png

M3= 4 image29.png

M3= 4image29.png

M3= 4image11.png

M3= image06.png

Therefore, since it has been shown earlier in our work that the value M3= image06.pngis true and correct, it shows that the general statement of Mnin terms of aX and bY is true.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    900 40.9 36810 810000 1672.81 Nauru 5,000 63.44 317200 25000000 4024.6336 Netherland 40,300 79.11 3188133 1624090000 6258.3921 New Caledonia 15,000 72.27 1084050 225000000 5222.9529 Nicaragua 2,900 70.92 205668 8410000 5029.6464 Nigeria 2,300 46.9 107870 5290000 2199.61 Northern Mariana Islands 12,500 76.29 953625 156250000 5820.1641 Oman 20,200 73.62 1487124 408040000 5419.9044

  2. Math Studies - IA

    In 2002, 2004 and 2006 Europe won 151/2-121/2, 181/2-91/2 and 181/2-91/2 respectively. These two sets of data can then be processed into a conclusion. To compare these two different sets of data, a similar unit or measurement will have to be found. The margin of a team's win is suitable.

  1. Math IA - Logan's Logo

    (I know it has shifted leftwards after comparing my graph to the original sine graph). Therefore, to find the value of c, I must first determine the center line of my curve - the middle line of the total height.

  2. Math IA - Matrix Binomials

    (We can also check this on a calculator). Now, using the expression, we find the value of X5 to be the same (proving the accuracy of our expression): X5=25-1 =24 =16 = We conclude that is indeed a valid expression.

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    Some general conclusion that can be drawn from the analysis of changing the slopes of lines. * A change in the y-intercept of the intersecting lines has no affect on the conjecture * Changing the slope of the lines Therefore I have tested lines with different slopes and different y-intercepts

  2. Mathematics IA - Particles

    At this point I decide that I want to find out how long the patient will live for if he goes untreated. I presume that once the immune system responds the particles will not double every four hours, but instead they will increase by 160%.

  1. Gold Medal heights IB IA- score 15

    The model was created solely based on the first set of data given in Chart 1. That is the reason why the model function does not match the additional data, since it had no relation with the data from Chart 2.

  2. MATH Lacsap's Fractions IA

    = E7(3) = E7(4) = E7(5) = E7(6) = The seventh row comes out as the line below: Testing the validity of the general statement To test the validity of the general statement, I will use the statement to find additional rows. By using the same method to finding the sixth and seventh row, the eighth and ninth row will also be calculated.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work