• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Matrix Binomials Portfolio

Extracts from this document...


Math SL Matrix Binomials Portfolio

        This portfolio will investigate the properties of matrix binomials in order to determine a general statement for Mn where n is a real number and an integer, and M is the 2image00.pngimage00.png matrix image28.pngimage28.png


X = image48.pngimage48.png                                 Y= image59.pngimage59.png

X2 = image70.pngimage70.png = image01.pngimage01.png                           X3 = image12.pngimage12.png = image24.pngimage24.png

                                       X4 = image34.pngimage34.png

Y2 = image37.pngimage37.png        Y3 = image38.pngimage38.png

                                       Y4 = image39.pngimage39.png

(X+Y) = image40.pngimage40.png

(X+Y)2 = image41.pngimage41.pngimage42.pngimage42.png                    (X+Y)3 = image43.pngimage43.png

                                     (X+Y)4 = image44.pngimage44.png

Expressions for Xn, Yn and (X+Y)n

Xn = image45.pngimage45.png            Yn = image46.pngimage46.png       (X+Y)n = image47.pngimage47.png

n > 0,  

let: W = any 2x2 matrix, image49.pngimage49.png

W-n = image50.pngimage50.png It is not possible to

...read more.



B3 = image60.pngimage60.png

B4 =  image61.pngimage61.png


(A+B) = image62.pngimage62.png

(A+B)2 = image63.pngimage63.png



(A+B)3 = image66.pngimage66.png


(A+B)4 = image68.pngimage68.png


Expressions for An, Bn and (A+B)n

An = image71.pngimage71.png           Bn = image72.pngimage72.png

                         (A+B)n = image73.pngimage73.png

n > 0,  

let: W = any 2image74.pngimage74.png2 matrix, image49.pngimage49.png

W-n = image50.pngimage50.png It is not possible to divide an integer by a matrix, n < 0 does not exist


For any matrix where n=0 Wn = I    W0 = image51.pngimage51.png

Let: M = image28.pngimage28.png, M = A+B and M2 = A2+B2

A = aX = image13.pngimage13.png

...read more.


n must also be greater than zero. It cannot equal zero because any matrix raised to the power of zero would equal I the identity matrix, and it cannot be less than zero, because that would be the same as one divided by the matrix raised to the power of n. Since it is not possible to divide an integer by a matrix, it is not possible to raise any matrix to a negative exponent and this n must be greater than zero. Therefore the expressions determined in this portfolio are valid for 2image36.pngimage36.pngmatrices, where the value of n is greater than zero

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    -xs���(r)SW�Z�1/2�Æ��_��^4�4K;ö-'�(c)�r�Ǻ>-�6�Æ-�!����X[ǤC�Zh'_�:(r)*3\>(c)@�Â����:�| ��S-���1/4(5�OL�I-���I��}��gv��6zZhZ'y:�Æ&�-�=���Ì����c�M\ɯx"�7_ 1/4_>��|b��I�u_]��_�!|{"k'�(c)x-H�=i��Q�wt��å.��;1/2�.�,4� 1/4m�[�9�o�|S_����>...���Ú]"~Òµ-��97��[K��G�4-1u�{+yl�|?k(c)���3/4(r)>ä[^...-� G��]�j3/4;Ҧ�1/4ms/��7�-:�i���%�U�,zcx"ö�x"�6Ú�ƨ4�>�Y�Ҵ-wRÓµ[m#V���Þ'�mO�����Â9�<Ii"x�M�#:�<�<?��#{� �h�_&"�(tm)l<w�[1/2I�3/4��������Lk�+� ��?�q� �s�-0�|�(�-�ox��-����D��Z����[�"�N��>=�uMj*=aoj-0꺵����� ]B[0 ���D�d�1/43/4%�61/2��?�=����\�\q���Z�]�|UK�"W�&"m�"����ޣr<EqcØ�o���Wz-� m��o���Iá��n�q�O�qx'��[� xw�6�A��"H���<���g��8:....����D���� n@G� �E7¿ï¿½ï¿½ï¿½ k>0�'�$��M1l�t�4] �����>(MS_��Æu�oK�M/B7���'j-0�*XH��~&�տ|?���<�[msL�}��{�:���M�...��m_Bï¿½Ö ï¿½u?�6W��u��1/2-(c)�wO���]��:�G��..."S6`ݯ�� M�xK��>(�<[� �w3/4=�t�'°Ç1/4%�Ç48�9�x�\�,���Y���k� �x"(r)�m�(tm)�...��O� �'��L�"�/�%"�G}WN�O�^xf���V���j�Y��|[(c)_�Ú��C�^�h��(r)"����cu&�-�����-�G������M�ҵ���z"- ���x��~4�1��Q���"�k;� ��W�����["Ù�s�'�o �_ĺ�...� =n]CE��1mu-���-�'�?� |"a'K�e��4�"�t1/4(mtÖk1�N�l�-+��F����D�,Λ�sE"X���u(r)��x"S�:x�MV_�'�L� �4z���;� �oay�j���Pmk��A x���&� ��Zw�.��n�/�6)(c)xO¶~0�th�,|Cq�$�M3/4��N��4�O ��s�v:�Yn�""���@�$�m1/4 �S:}�Äk�zL^ �] � �|"x�^"W��" �v�G�tK1/29|3�kWz��z��-��SY�� �;�a�...��<Q���ÊÑ°pF�`p@<��K@P@P � {��<Y�g �/�N��"]��� �&�s�y�k���P � � �_�G�=sZ�"��z�\�A�������7�=�U} O�1/4'j�����&����N��Mv�Z]Keio3��~��Ia> �+)��S�v�3/4�g�ˢx�T"\�6��M�" �t��eÖ´"1l ��"+�i4�-�(�=�Q*�1/49k�i��<��G�?x�]-�'�MÇt��OZׯ�u��?���{�-�4�4�-RK'(�����:���k� [�Ú�'�t�ٿ�|M6���x��I1/4�Y��\�����8 �u�J�H�ӵ;����r�'[�[�?3/4��|{��5�z�"���Ä-Ϭ�'�IJ�jz�...u-R��CV�N�us��j1��֡�YϧCqginQËz/�~x3Å+�|o"Z�P���VSi�^���*�3/4"�w���>�(c)A��oJ�ִɵ2��[

  2. Math IA - Matrix Binomials

    For (X+Y)n, where n=1, i.e. (X+Y): (X+Y)= = = =2I Where n=2, i.e. (X+Y)2: (X+Y)2=(X+Y)(X+Y) (X+Y)2= = = = =4I Where n=3, i.e. (X+Y)3: (X+Y)3=(X+Y)(X+Y)(X+Y) (X+Y)3=(X+Y)2(X+Y) (X+Y)3= = = = =8I Where n=4, i.e. (X+Y)4: (X+Y)4=(X+Y)(X+Y)(X+Y)(X+Y) (X+Y)4=(X+Y)3(X+Y) (X+Y)4= = = = =16I We can now find an expression for (X+Y)n through consideration of the integer powers of (X+Y)

  1. Math Portfolio: trigonometry investigation (circle trig)

    sinx=cosy x+y=90 Thus, the value of sine theta is equal to the value of cosine 90 minus theta. sin ?=cos(90- ?) Again to verify the conjecture, two random angles that are not already in the table of balues are tested from the first quadrant in the range of 0�???90�.

  2. Math Portfolio Type II

    * Let us try with the harvest size, x = 9000 The new recursive function becomes un+1 = (-1 x 10-5) un2 + 1.6un - 9000 which we shall enter in the RECUR mode of the GDC Casio CFX-9850GC Plus.

  1. Matrix Binomials

    X3 = X2 x X = x = = X4 = X3 x X = x = = X5 = X4 x X = x = = X6 = X5 x X = x = = As you might have noticed, this matrix has the same digits as Matrix A,

  2. Stellar Numbers math portfolio

    The general statement for the 6-stellar number at stage Sn in terms of n (where n is an element of positive integers) can be found in a variety of ways. If one were to want a recursive formula, from the pattern found earlier to get S7, it would be Sn =2(Sn-1)-Sn-2+12.; +.

  1. Math 20 Portfolio: Matrix

    Considering the follow arrays of rectangular diagrams shown below: In each diagram, there are two copies of the triangular diagram, a black one and a white one. The original triangular diagrams from stage 1 to stage 8 now transformed into rectangles.

  2. Math Portfolio

    1300 1150 1060 970 900 850 800 780 740 710 680 660 Graph 1 This chart indicates the flow rate of the river against the time. The software also gives the r2 value of the graph that indicates the accuracy of the line best fit, in relation to the points that have been plotted.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work