• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Modelling the course of a viral illness and its treatment

Extracts from this document...

Introduction

Modelling the course of a viral illness and its treatment Description (from assignment) When viral particles of a certain virus enter the human body, they replicate rapidly. In about four hours, the number of viral particles has doubled. The immune system does not respond until there are about 1 billion viral particles in the body. The first response of the immune system is fever. The rise in temperature lowers the rate at which the viral particles replicate to 160% every fours hours, but the immune system can only eliminate these particular viral particles at the rate of about 50 000 viral particles per hour. Often people do not seek medical attention immediately as the think they have a common cold. If the number of viral particles, however, reaches 1012, the person dies. Modelling infection 1. A patient is infected with 10 000 viral particles. Every four hours, the viral particles doubles = 200% (see figure 1-1).The viral particles replicate every four hours. ...read more.

Middle

By using the exponential regression, putting in the values (see figure 2-1). I find the function and by solving e0,1137=1,125. I will get a function that looks like this So the growth factor after 26,6 hours when the human body has fever is 112,5 % found through regression.. However, the immune system will eliminate 50000 viral particles per hour so I need to subtract 50000 from the total amount. Which means, . Since a person will die if the number of viral particles reaches 1 million (1012), we can estimate the time using the model. Vn=1012, so 117,3 hours is the remaining time after the immune system have responded. So to find the total amount of time the patient have before he dies can be found be adding the time it takes from when the patient is infected to the immune system response adding with the times before it exceed 1012 viral particles. ...read more.

Conclusion

This makes me see the small differences in the precision of the values Applying your model 7. If the patient is a young child instead of an adult, than the models have to be modified carefully. The immune system of a child is weaker than an adult, so this means the immune system would respond later than an adult. Therefore, a child would die earlier of the amount of viral particles than an adult if left untreated, because the body of a child is smaller and the immune system eliminates less particles. The amounts of dosage and medications also have to be reduced, since a body of a child can not handle as much compared to an adult body. So the time to start the regimen of medication also have to start earlier, since a child is smaller than an adult and the body can not handle the same amount of viral particles. So the models of immune response have to be increased and the medication has to be decreased. Appendix Graph 4-1 ?? ?? ?? ?? Kien Vu ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. MODELLING THE COURSE OF A VIRAL ILLNESS AND ITS TREATMENT

    Using a spreadsheet, or otherwise, develop a model for the next phase of the illness, when the immune response has begun but no medications have yet been administered. Use the model to determine how long it will be before the patient dies if the infection is left untreated.

  2. A logistic model

    Again using the first model in this task, investigate different initial population sizes from which a harvest of 8,000 fish is sustainable. The population sizes that was investigated, was: u1 ? 2 ?10 This initial population is too small for it to be sustainable: 19 IB Mathematics HL Type II

  1. Creating a logistic model

    done so in order to support my previous generalizations on logistic formulas, I am in a way, justified to do so. Having said, this, this logistic function model has sufficiently proven my generalization 1 for logistic models wrong. I had stated that "As r increases by 0.5, a increases by 1."

  2. Statistics project. Comparing and analyzing the correlation of the number of novels read per ...

    the number of books read can be accounted for by the variation in the modal mark. In other words, approximately 70% of the variation is attributed to other factors. GIRLS No of books(x) Modal mark(y) (xy) (x�) (y�) 2 70 140 4 4900 3 70 210 9 4900 2 70

  1. Modelling the amount of a drug in the bloodstre

    menu and there will different items of functions to specify your list of data. For this assignment one will choose equations he is most familiar with. In this case four of the optional items were chosen: * Linear regression ( ax+b)

  2. Modelling Probabilities in Tennis. In this investigation I shall examine the possibilities for ...

    It is important to remember the assumptions we are making here. In real play it is unlikely that a player's point probability would remain constant throughout play. We have not taken into account factors such as tiredness, confidence etc. which would seriously affect the game.

  1. Mathematics IA - Particles

    At this point I decide that I want to find out how long the patient will live for if he goes untreated. I presume that once the immune system responds the particles will not double every four hours, but instead they will increase by 160%.

  2. Modelling the course of viral illness

    to consider that after the fever begins at , will be 160% every four hours and the immune system will eliminate 50 000 viral particles per hour. Therefore the model should be developed into: where is the approximate time where the patient dies without any treatment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work