• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

models and graphs relating the Body Mass Index for females to their ages in the US in the year 2000

Extracts from this document...

Introduction

Anh Nhu Vu

IB

Mathemathics Standard Level 2008

Maths Coursework

This coursework will explore models and graphs relating the Body Mass Index for females to their ages in the US in the year 2000. The ages and the corresponding BMI numbers are variables and as we generate the function that models the behaviour of the graph later on, the parameters are the values of a, b, c and d in the formula of the function.

When the data points are plotted on a graph, it is interesting to see what kind of graph these points are forming.

image00.png

The graph BMI appears to resemble the graph of a trigonometric function. If we base on the function y=sinx to develop our model function, the type of function that models the behaviour of the graph is:

y1=a×sin [b(x+c)] +d

These are the reasons why I chose this type of function:

Primarily, the shape of the graph resembles that of the graph of the function y=sinx.

However, in comparison to the graph of the function y=sinx, the data points of the graph BMI indicates that the processes of transformation have been done:

_Vertical and horizontal stretch (the scales are represented by a and b)

_Vertical and horizontal translation (the scales are represented by c and d)

...read more.

Middle

20-7.5=12.5 places and it is shifted vertically upward: 21.65-3.225=18.425 places.

 Therefore we can fully develop our model function:

y1=3.225× sin [image03.png(x-12.5)] +18.425

The graph of this function is presented below:

image04.png

Having developed an equation that is deduced to fit the original graph BMI, it is interesting to see how my model graph fits the points on the original graph BMI as well as to see the differences.

image05.png

There are clear slight differences between the graph Y1 and the graph BMI. We can see that the graph Y1 is an approximation of the original data. The table below shows how the values of y corresponding with the same values of x vary between the two graphs.

x

y value (BMI)

y value  (Y1)

2

16.4

15.815

3

15.7

15.487

4

15.3

15.27

5

15.2

15.2

6

15.21

15.27

7

15.4

15.478

8

15.8

15.815

9

16.3

16.267

10

16.8

16.812

11

17.5

17.428

12

18.18

18.087

13

18.7

18.762

14

19.36

19.421

15

19.88

20.037

16

20.4

20.582

17

20.85

21.034

18

21.22

21.371

19

21.60

21.579

20

21.65

21.65

These differences can

...read more.

Conclusion

Having said that, it is interesting to see some other BMI-for-age percentiles graphs that look similar to our original data BMI.

This is the data on the BMI related to ages for girls from the ages of 2 to 20 years.

SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion (2000).

image11.png

If we go through the process of transformation again, we could also develop functions that model the behaviours of these graphs. However, it is unlikely that we can use the graph to estimate further feature of the data.

In conclusion, mathematical models in some cases can hardly be used to explore the natural tendency of certain real situations; in this case the BMI data. We can generate functions that model some behaviour of some data, but the actual data will not follow the rule of mathematical graphs. This fact is most obvious in the case of the BMI data of the females in Lebanon, in which it is very difficult to develop a function that fits the data well.

Bibliography:

http://www.emro.who.int/Publications/EMHJ/1302/article21.htm

http://www.health.vic.gov.au/childhealthrecord/growth_details/chart_girls4.htm

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. This portfolio is an investigation into how the median Body Mass Index of a ...

    to the same domain and range as the domain and range on the scatterplot, the graph of both the data and the function together is as follows: Comparing the two graphs, one can see that where BMI = 18.4 in the function is around 0.400 years off from the corresponding point on the scatterplot where BMI = 18.4.

  2. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    Therefore as values of winning probability for c get close, the values for odds in favor of Player C winning grow very rapidly, seemingly exponentially. Also as values of c get small, the values of odds of winning are getting very close to zero and are asymptotic to the x-axis.

  1. A logistic model

    of a hydrolectric project during the first 20 years by means of the logistic function model U n+1 {11} 70700 65700 60700 55700 50700 45700 40700 35700 30700 25700 20700 15700 10700 5700 700 -4300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

  2. Body Mass Index

    The maximum y-value of the function occurs at x=20, the peak is therefore 20. The minimum y-value of the function occurs at x=5, so the trough is 5. In order to find the horizontal translation we must add the peak and trough values and divide by 2.

  1. Maths BMI

    that the model function is quite similar to the Original graph, but is not close enough. This is because the y value of the original function tends to decrease as the x moves towards 20. The y value of the modelled function however, tends to increase greater as the x value moves towards 20.

  2. Creating a logistic model

    Generalization 3: No matter the initial rate, the sustainable limit always remains at 60000. We should also compare the logistic function of each of these initial growth rates. For r = 1.5, we have y = For r = 2, we have y = For r = 2.3, we have

  1. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    + 1 = 169 Using n=5: 4n2 +4n + 1 = 121 4(5)2 +4(5) + 1 = 121 Therefore the general statement for this shape is: 4n2 +4n + 1 As this is a quadratic equation, a graph was plotted to demonstrate how it expanded This time, a shape with a p value of 5 (i.e.

  2. Develop a mathematical model for the placement of line guides on Fishing Rods.

    to see the shape of the trend that is created as more guides are added to the rod. From this scatter plot of the points, we can see that there is an exponential increase in the distance from the tip of the rod as each subsequent guide is added to the rod.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work