• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

Parallels and Parallelograms

Extracts from this document...

Introduction

QASMT Mathematics IA Parallels and Parallelograms Jeremiah Joseph 24/05/2009 This internal assessment will investigate the relationship between vertical transversals, horizontal lines and parallelograms. Vertical transversals are lines that intersect horizontal lines. To create parallelograms two or more parallel vertical transversals needs to intersect with two or more horizontal lines. This is shown in figure 1.1 and figure 1.2. Figure 1.1 Figure 1.2 These above figures demonstrate how vertical transversals (red) intersect with horizontal lines (black) to create parallelograms. These parallelograms are demonstrated in figure 1.1, A1, A2, A1 U A2. Furthermore, the parallelograms are illustrated in figure 1.2, A1, A2, A3, A1 U A2, A2 U A3, and A1 U A2 U A3. If parallel transversals are continually added an increasing number of parallelograms would be formed and a general formula can be deduced. Vertical Transversals Parallelograms Notation 2 1 A1 3 3 A1, A2, A1 U A2 4 6 A1, A2, A3, A1 U A2, A2 U A3, A1 U A2 U A3 5 10 A1, A2, A3, A4, A1 U A2, A2 U A3, A3 U A4, A1 U A2 U A3 , A2 U A2 U A3, A1 U A2 U A3 U A4 6 15 A1, A2, A3, A4, A5, A1 U A2, A2 U A3, A3 U A4, A4 U A5, A1 U A2 U A3, A2 U A3 U A4, A3 U A4 U A5, A1 U A2 U A3 U A4, A2 U A3 U A4 U A5, A1 U ...read more.

Middle

? 3 = 3 Furthermore, The above examples justify that is the general formula for the relationship between the number of vertical transversals and the number of parallelograms. However, to develop a general formula that encompasses the variables of the number of vertical transversals and horizontal lines, an equation needs to be developed that deduces the number of parallelograms that is formed when horizontal lines vary. This equation needs to assume that the number of vertical transversals remain constant. The following figures demonstrate how additional parallelograms are formed when an increasing number of horizontal lines are added. Figure 3.1 Figure 3.2 Figures 3.1 and 3.2 demonstrate how horizontal lines (black) are added to a constant number of vertical transversals to form an increasing number of parallelograms. This relationship is extrapolated in the table below. Horizontal lines Parallelograms Notation 2 1 A1 3 3 A1, A2, A1 U A2 4 6 A1, A2, A3, A1 U A2, A2 U A3, A1 U A2 U A3 5 10 A1, A2, A3, A4, A1 U A2, A2 U A3, A3 U A4, A1 U A2 U A3 , A2 U A2 U A3, A1 U A2 U A3 U A4 6 15 A1, A2, A3, A4, A5, A1 U A2, A2 U A3, A3 U A4, A4 U A5, A1 U A2 U A3, A2 U A3 U A4, A3 U A4 U A5, A1 U A2 U A3 U A4, A2 U A3 U A4 U A5, A1 U A2 ...read more.

Conclusion

Figure 6.1 The above figure has parallelograms A1, A2, A3, A4, A1 U A2, A3 U A4, A1 U A3, A2 U A4 and A1 U A2 U A3 U A4. In total, figure 6.1 has 9 parallelograms; this coincides with the general formula's answer. Figure 6.2 Figure 6.2 has parallelograms A1, A2, A3, A1 U A2, A2 U A3, and A1 U A2 U A3. In total, figure 6.2 has 6 parallelograms. This coincides with the general formula's answer. ? Therefore the general statement for the relationship between vertical transversals, horizontal lines and the number of parallelograms is Where P is the number of parallelograms produced, v is the number of vertical transversals and h is the number of horizontal lines. However, this equation can only be used when ? 2 and ? 2. This is because a parallelogram is only created when 2 or more of each transversal are present. This is further demonstrated in figures 7.1 and 7.2. Figure 7.1 Figure 7.2 Furthermore, the variables, and have to be natural numbers. The equation does not work when the variables are fractions, negative numbers or imaginary numbers. The generalisation of the formula that was found was arrived at because a varying number of vertical transversals, intersect with a constant number of horizontal lines to produce Av parallelograms. Furthermore, a varying number of horizontal lines, , intersect with a constant number of vertical transversals to produce Ah parallelograms. Therefore a varying number of vertical transversals, , intersect with a varying number of horizontal lines, , to produce Av × Ah parallelograms. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Studies I.A

    $5,700 (2007 est.) $5,400 (2006 est.) note: data are in 2008 US dollars Algeria $7,000 (2008 est.) $6,900 (2007 est.) $6,600 (2006 est.) note: data are in 2008 US dollars American Samoa $8,000 (2007 est.) $5,800 (2005 est.) Andorra $42,500 (2007) $38,800 (2005) Angola $8,800 (2008 est.) $7,900 (2007 est.) $7,000 (2006 est.)

  2. Math IA - Logan's Logo

    This is shown on the graph by the circled blue point. Going back to the original sine curve as a reference: For the original sine curve, we know the center line is the x-axis, and we see that the original sine curve starts at (0, 0)

  1. Math Studies - IA

    Thus the negative correlation appears to be very strong. On the X-axis, the value 1 represents the point were US and Europe ties in the majors. Below that point US wins, and above that point Europe wins. The values reflect how big the difference was for the relative win or loss.

  2. Parallels and Parallelograms. Aim: To find the effects of increasing ...

    Starting with 1, the initial expression is p = n (n-1), where 'n' is the # of transversal lines and 'p' the # of parallelograms. 4. Test the previous expression with the other values for # of transversal lines. We notice than 2 does not follow the rule, since 2 (2-1)

  1. Mathematics IA - Particles

    The left hand column displays the number of hours since the immune system came into effect, and the right hand column displays the particle count. On top the formula input by me is displayed. 122 hours after the immune system responds the particle count is 1.0071 ?

  2. Type I - Parallels and Parallelograms

    Also A3 A4 make another parallelogram, forming A7. When A1 A2 A3 are combined this forms another parallelogram, making A8. Then A2 A3 A4 make a parallelogram which is A9. Then lastly combining all of these together, A1 A2 A3 A4, this makes the last parallelogram in this figure, A10.

  1. Investigating Slopes Assessment

    5 1+1 X= 2 Y= 16x+(-20) 16 4+12 Exactly what I said in my hypothesis. If we notice the relations, everyone of them have the exact correlation for when f(x)=X2+X3, f1(x) is always f1(x)=2X+3X2. So, for this function the conjecture holds.

  2. Stellar numbers. This internal assessment has been written to embrace one of the ...

    The last 4 columns show the sum of the stellar numbers expressed in different forms and notations. The 1st column shows the sum in terms of adding the 1st difference to the previous term. The 2nd column replaces the previous term with a numerical value.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work