• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Portfolio SL - Matrix

Extracts from this document...

Introduction

Math Portfolio SL

MATRIX BINOMIALS

NONAME STUDENT

3/17/2009


MATRIX BINOMIALS

In this portfolio I will try to find a general statement and patterns for given matrix binomials exercises. For data processing I will use TI-83 Plus (Sliver Edition) graphing calculator. I will use my knowledge from patterns and matrix  in order to find suitable formulas.

X=image00.pngimage00.png, Y=image37.pngimage37.png.

Find X2, X3,X4;Y2, Y3,Y4.

image84.pngimage89.png

X2=image94.pngimage94.png= image103.pngimage103.pngX3=image01.pngimage01.pngX4=image02.pngimage02.png
Y2=image17.pngimage17.pngY3=image14.pngimage14.pngY4=image28.pngimage28.png

Find expressions for Xn , Yn, (X+Y)n

  • The entries double for every higher power of X, i.e.:

X2= 2X= 21X
X
3= 4X= 22X
X
4= 8X = 23X     follows
Xn=2n-1X 

I will test this formula with a random number:                                    X10=image38.pngimage38.pngX10= 210-1image46.pngimage46.png= image38.pngimage38.png 
image59.png

X19= 219-1image46.pngimage46.png= image71.pngimage71.png

Xn=2n-1Xformula valid for all natural numbers N;image79.png = {1,2,3,...} as it is shown in examples.

  • The entries double for every higher power of Y, i.e.:

Y2= 2Y
Y
3= 4Y= 22Y
Y
4= 8Y = 23Y

...read more.

Middle

A3=image05.pngimage05.png3= image06.pngimage06.pngA3= image03.pngimage03.png3= image07.pngimage07.png
A4= image05.pngimage05.png4=image08.pngimage08.pngA4= image03.pngimage03.png4=image09.pngimage09.png

image10.pngimage11.png

b=3                                                         b=4
B=3Yimage12.pngimage12.pngB= image13.pngimage13.png                                   B=4Yimage12.pngimage12.pngB= image14.pngimage14.png
B
2=image13.pngimage13.png2= image15.pngimage15.pngB2= image14.pngimage14.png2= image16.pngimage16.png

B3=image13.pngimage13.png3= image18.pngimage18.pngB3= image14.pngimage14.png3= image19.pngimage19.png
B4=image13.pngimage13.png4= image20.pngimage20.pngB4= image14.pngimage14.png4= image21.pngimage21.png

Find expressions for An , Bn, (A+B)n

  • As I’m raising powers by one, the entries increase double the constant is.
    For example:

A= 6Ximage12.pngimage12.png A=image22.pngimage22.png     
A
2= image23.pngimage23.png              A3=image24.pngimage24.pngA4= image25.pngimage25.png
As it is visible, every entry increases by 12, i.e. double the constant
a is.

From this pattern I derived formula that:
An= anXn

Testing with random numbers:
A2=62X2
A2=36image05.pngimage05.png= image23.pngimage23.png

A
=10Ximage12.pngimage12.png A=image26.pngimage26.pngA3=103X3                    
A3=image26.pngimage26.png3= image27.pngimage27.pngA3= image27.pngimage27.png

The same pattern goes for
B=bY.

image29.png
B=-3Y
B2=image30.pngimage30.png2= image31.pngimage31.png

B3=image30.pngimage30.png3= image32.pngimage32.png                     
B4=image30.pngimage30.png4= image33.pngimage33.png          The entries increase by 6, i.e. the double b is.    

image34.png
B
=image35.pngimage35.pngY
B≈
image36.pngimage36.png
B
2image36.pngimage36.png2image39.pngimage39.png
The entries increase by app. 6.26, i.

...read more.

Conclusion

+Bk)(A+B)= AkA + BkB +AkB + BkA

We showed that AB=BA=0, therefore AkB + BkA=0

It follows that
AkA + BkB +AkB + BkA= AkA + BkB  
A
kA + BkB= Ak+1 + Bk+1
Mk+1= Ak+1 + Bk+1

By doing and deriving formulas (especially in the second exercise) I found that the general formula is:
Mn=anXn+ bnYn
                                                         
 Mn=(aX+ bY)n


a

b

n

5

2

 2

   
M= image66.pngimage66.pngM= image67.pngimage67.png

 M2= image68.pngimage68.png
image67.pngimage67.png2= image69.pngimage69.png2
image67.pngimage67.png2= image70.pngimage70.pngn

image67.pngimage67.png2= image67.pngimage67.png2
Using GDC:
M2= image72.pngimage72.png

a

b

n

4

-1.5

 5

   
M= image66.pngimage66.pngM= image73.pngimage73.png
image73.pngimage73.png5=image74.pngimage74.png5
image73.pngimage73.png5= image73.pngimage73.png5
image75.png

M5= image76.pngimage76.png

In the conclusion I can say that I found the scope of the statement.
|A|= ab-cd      
|X|
= image77.pngimage77.png|Y|= image78.pngimage78.png                             
|X|= 1-1= 0                              |Y|= 1-1= 0                            

Since the starting matrices have determinant 0 and thus they don’t have inverse, in my conclusion I can say that n€image79.png. Also I showed in examples above that constants a and b can be rational and irrational numbers (image80.pngimage80.png, therefore a, b€R. I would limit my general statement on the set of real numbers this is the only set of number that we learnt in matrix unit.

                                     



Page |

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    TMRl��M6�Yc&#���#c�]���(��x7 �'���x��/��W�d�!�\6R�V'Q�&$@�%P5I�a�Xa�]^�5E� Ç¥8 )��x7 �'����"����bSH�a^'u8J2*�"H ��))nk,q,+��r9���js��o�v"1/4 ��� TSR�3/4�&"�D�1/4|� �U�����*�?�1/4 "���$E0L���31/4��t �� �0�?�| ,"�"�� ZUb(tm)A`'��+�1/4�۶n�z���K}���ZZZZ[[��}��mÛ¶m�Ν"v�*f|�Xx<-�B�X-�`-�1/4�H 'f!)�{�'�x�� L$R/_x�...3/43/43/4��^����"�z�(c)={�=z�""�'#Y:�c�BCa�"��c.��"��-�k^'/ ���...��(c)(c)A�\.�D2 ���W," |�}�����O1/4b���XM�=��4[�B>h�(r)�O��$@�$0 I!u��ޱc��-'QWWw��7�}�����x{����Z����b$.6f��qW���>�(c)� ���/�"" ("��$ų�>���?��R�z�-_~�n��yç¨ï¿½ �x'��bK�z�%W�S�"�_��t�mÌrx�OY P�YH��_� � �� ��^���;�x�(tm)g���ÆGGG�Q lÙ²E*CR@�H��c��F�'�Ö��J�:� (tm)|kH��H XI'�fo1/2�� -x@�V�[���f�/�Eqxx���"w���...-MW3/4��#i>��0�T U...�J���p���B �1/4�8�X�f D�^-8p`Ñ¢E��~;�'N�:�-�-���'���{/G{{�w3/4��C�-�� �u�z0k�el�A(c)�d�K�����|�e|K$P-S�n�� �`d�P��x<-�D���z(c)<��h��_�ܵ��"J�;$�<gO����'�5$@U!0/�N@�C��(r);�_...5-,�`�(tm)�!�(r) �m���S�%���$�b�e�" &��0�L�"��&bU�<�(+qÞfI@'�7� �l= �@�+h7'�x-��$@e$ I���0' ���b|�F��}�'{�8nÞH`6!)/h�Q��OB��ceôºï¿½ï¿½%(#EH �/J3"��"-��E&�>o^����$@�P��' s<'�� ��)D� c� �W' "��R$b�`A!�T�!m�>�l��% I�>v�`2"ò¤ª@�1/4�iܸ"Ø�: �2P����}a��(tm)��E�jg��)����$0J'�>g���P�jC����3/4���f3(tm)1/4-�F@A'BH�"T2���V��6�_X����$@�

  2. Math Portfolio: trigonometry investigation (circle trig)

    graph so it is coincident with the y=3cos? graph; therefore, the values of maxima, minima, amplitude, period and frequency are the same as the y=3cos? graph. y= (-3) cos? Reflected through the x axis from the y=3cos? graph; therefore, the values of maxima, minima, amplitude, period and frequency are the same as the y=3cos? graph. y=2sin? y=-2sin? y=2sin(-?)

  1. Maths SL Portfolio - Parallels and Parallelograms

    = sum of all integers from 1 to 9 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 p = (m2 - m) � 2 p = 102 - 10 � 2 = 90 � 2 = 45 We

  2. Math Portfolio - SL type 1 - matrix binomials

    It is based on row-by-column multiplication. For the multiplication of matrices, multiply the first element in the row by first element in the column. Then multiply the second element in the row by the second element in the column. This continues and in the last stage, products are added; however, this method only works when rows and columns have the same number of elements.

  1. Math IA - Matrix Binomials

    equation listed above: In the sequence {1, 2, 4, 8}, a=1 r=2 However, we must note that this formula only gives us the progression for the scalar values which will be multiplied to the matrix, Y. In order to find the final expression for Yn, we must multiply the general

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    This is in line with real life as athletes compete not only to win but to break the previous records of other athletes. The growth appears to have the general shape of a logarithm; increasing but over time increasing less and less.

  1. Math SL Fish Production IA

    a, b, c, d and e are: 3s.f Therefore when the values are substituted into the template equation, the equation can be rewritten as: Graph 7: This shows the function model for the 3rd section acquired from solving the matrix equation.

  2. The purpose of this investigation is to explore the various properties and concepts of ...

    , messages and other data now becomes very important to any country?s government. Results. Encoding Method A B C D E F G H I J K L M 2 4 6 8 10 12 14 16 18 20 22 24 26 N O P Q R S T U

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work