• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Portfolio SL - Matrix

Extracts from this document...

Introduction

Math Portfolio SL

MATRIX BINOMIALS

NONAME STUDENT

3/17/2009


MATRIX BINOMIALS

In this portfolio I will try to find a general statement and patterns for given matrix binomials exercises. For data processing I will use TI-83 Plus (Sliver Edition) graphing calculator. I will use my knowledge from patterns and matrix  in order to find suitable formulas.

X=image00.pngimage00.png, Y=image37.pngimage37.png.

Find X2, X3,X4;Y2, Y3,Y4.

image84.pngimage89.png

X2=image94.pngimage94.png= image103.pngimage103.pngX3=image01.pngimage01.pngX4=image02.pngimage02.png
Y2=image17.pngimage17.pngY3=image14.pngimage14.pngY4=image28.pngimage28.png

Find expressions for Xn , Yn, (X+Y)n

  • The entries double for every higher power of X, i.e.:

X2= 2X= 21X
X
3= 4X= 22X
X
4= 8X = 23X     follows
Xn=2n-1X 

I will test this formula with a random number:                                    X10=image38.pngimage38.pngX10= 210-1image46.pngimage46.png= image38.pngimage38.png 
image59.png

X19= 219-1image46.pngimage46.png= image71.pngimage71.png

Xn=2n-1Xformula valid for all natural numbers N;image79.png = {1,2,3,...} as it is shown in examples.

  • The entries double for every higher power of Y, i.e.:

Y2= 2Y
Y
3= 4Y= 22Y
Y
4= 8Y = 23Y

...read more.

Middle

A3=image05.pngimage05.png3= image06.pngimage06.pngA3= image03.pngimage03.png3= image07.pngimage07.png
A4= image05.pngimage05.png4=image08.pngimage08.pngA4= image03.pngimage03.png4=image09.pngimage09.png

image10.pngimage11.png

b=3                                                         b=4
B=3Yimage12.pngimage12.pngB= image13.pngimage13.png                                   B=4Yimage12.pngimage12.pngB= image14.pngimage14.png
B
2=image13.pngimage13.png2= image15.pngimage15.pngB2= image14.pngimage14.png2= image16.pngimage16.png

B3=image13.pngimage13.png3= image18.pngimage18.pngB3= image14.pngimage14.png3= image19.pngimage19.png
B4=image13.pngimage13.png4= image20.pngimage20.pngB4= image14.pngimage14.png4= image21.pngimage21.png

Find expressions for An , Bn, (A+B)n

  • As I’m raising powers by one, the entries increase double the constant is.
    For example:

A= 6Ximage12.pngimage12.png A=image22.pngimage22.png     
A
2= image23.pngimage23.png              A3=image24.pngimage24.pngA4= image25.pngimage25.png
As it is visible, every entry increases by 12, i.e. double the constant
a is.

From this pattern I derived formula that:
An= anXn

Testing with random numbers:
A2=62X2
A2=36image05.pngimage05.png= image23.pngimage23.png

A
=10Ximage12.pngimage12.png A=image26.pngimage26.pngA3=103X3                    
A3=image26.pngimage26.png3= image27.pngimage27.pngA3= image27.pngimage27.png

The same pattern goes for
B=bY.

image29.png
B=-3Y
B2=image30.pngimage30.png2= image31.pngimage31.png

B3=image30.pngimage30.png3= image32.pngimage32.png                     
B4=image30.pngimage30.png4= image33.pngimage33.png          The entries increase by 6, i.e. the double b is.    

image34.png
B
=image35.pngimage35.pngY
B≈
image36.pngimage36.png
B
2image36.pngimage36.png2image39.pngimage39.png
The entries increase by app. 6.26, i.

...read more.

Conclusion

+Bk)(A+B)= AkA + BkB +AkB + BkA

We showed that AB=BA=0, therefore AkB + BkA=0

It follows that
AkA + BkB +AkB + BkA= AkA + BkB  
A
kA + BkB= Ak+1 + Bk+1
Mk+1= Ak+1 + Bk+1

By doing and deriving formulas (especially in the second exercise) I found that the general formula is:
Mn=anXn+ bnYn
                                                         
 Mn=(aX+ bY)n


a

b

n

5

2

 2

   
M= image66.pngimage66.pngM= image67.pngimage67.png

 M2= image68.pngimage68.png
image67.pngimage67.png2= image69.pngimage69.png2
image67.pngimage67.png2= image70.pngimage70.pngn

image67.pngimage67.png2= image67.pngimage67.png2
Using GDC:
M2= image72.pngimage72.png

a

b

n

4

-1.5

 5

   
M= image66.pngimage66.pngM= image73.pngimage73.png
image73.pngimage73.png5=image74.pngimage74.png5
image73.pngimage73.png5= image73.pngimage73.png5
image75.png

M5= image76.pngimage76.png

In the conclusion I can say that I found the scope of the statement.
|A|= ab-cd      
|X|
= image77.pngimage77.png|Y|= image78.pngimage78.png                             
|X|= 1-1= 0                              |Y|= 1-1= 0                            

Since the starting matrices have determinant 0 and thus they don’t have inverse, in my conclusion I can say that n€image79.png. Also I showed in examples above that constants a and b can be rational and irrational numbers (image80.pngimage80.png, therefore a, b€R. I would limit my general statement on the set of real numbers this is the only set of number that we learnt in matrix unit.

                                     



Page |

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    TMRl��M6�Yc&#���#c�]���(��x7 �'���x��/��W�d�!�\6R�V'Q�&$@�%P5I�a�Xa�]^�5E� Ç¥8 )��x7 �'����"����bSH�a^'u8J2*�"H ��))nk,q,+��r9���js��o�v"1/4 ��� TSR�3/4�&"�D�1/4|� �U�����*�?�1/4 "���$E0L���31/4��t �� �0�?�| ,"�"�� ZUb(tm)A`'��+�1/4�۶n�z���K}���ZZZZ[[��}��mÛ¶m�Ν"v�*f|�Xx<-�B�X-�`-�1/4�H 'f!)�{�'�x�� L$R/_x�...3/43/43/4��^����"�z�(c)={�=z�""�'#Y:�c�BCa�"��c.��"��-�k^'/ ���...��(c)(c)A�\.�D2 ���W," |�}�����O1/4b���XM�=��4[�B>h�(r)�O��$@�$0 I!u��ޱc��-'QWWw��7�}�����x{����Z����b$.6f��qW���>�(c)� ���/�"" ("��$ų�>���?��R�z�-_~�n��yç¨ï¿½ �x'��bK�z�%W�S�"�_��t�mÌrx�OY P�YH��_� � �� ��^���;�x�(tm)g���ÆGGG�Q lÙ²E*CR@�H��c��F�'�Ö��J�:� (tm)|kH��H XI'�fo1/2�� -x@�V�[���f�/�Eqxx���"w���...-MW3/4��#i>��0�T U...�J���p���B �1/4�8�X�f D�^-8p`Ñ¢E��~;�'N�:�-�-���'���{/G{{�w3/4��C�-�� �u�z0k�el�A(c)�d�K�����|�e|K$P-S�n�� �`d�P��x<-�D���z(c)<��h��_�ܵ��"J�;$�<gO����'�5$@U!0/�N@�C��(r);�_...5-,�`�(tm)�!�(r) �m���S�%���$�b�e�" &��0�L�"��&bU�<�(+qÞfI@'�7� �l= �@�+h7'�x-��$@e$ I���0' ���b|�F��}�'{�8nÞH`6!)/h�Q��OB��ceôºï¿½ï¿½%(#EH �/J3"��"-��E&�>o^����$@�P��' s<'�� ��)D� c� �W' "��R$b�`A!�T�!m�>�l��% I�>v�`2"ò¤ª@�1/4�iܸ"Ø�: �2P����}a��(tm)��E�jg��)����$0J'�>g���P�jC����3/4���f3(tm)1/4-�F@A'BH�"T2���V��6�_X����$@�

  2. Math IA - Matrix Binomials

    (integer powers increase), then the corresponding elements of each matrix are: 1, -4, 16, -64, ... These terms represent the pattern between the scalar values multiplied to A=aX where a= -2 and hence A= to achieve an end product of An.

  1. Math Portfolio: trigonometry investigation (circle trig)

    The frequency is how many cycles or pattern the graph have gone through. When expressed to radian the frequency is the reciprocal of the period meaning which is approximately 0.1592. In this cos? graph the line passes through the points (-,1), (-,0), (-,-1), (-,0), (0,1), (,0), (,-1), (,0), and (,1)

  2. IB Math SL portfolio

    an+1 = 2 + an Using the same method, the first 10 decimal values of this sequence are: a1 � 1.8477590650226 a2 � 1.9615705608065 a3 � 1.9903694533444 a4 � 1.9975909124103 a5 � 1.9993976373924 a6 � 1.9998494036783 a7 � 1.9999623505652 a8 � 1.9999905876192 a9 � 1.9999976469034 a10� 1.9999994117258 These values also appear to be approaching an asymptote.

  1. Math Portfolio Type II

    decreasing trend compared to when the harvest size is 5000 or even 7500. The population does not stabilize at all, and in fact, dies out by the 42nd year when the value as shown by the calculator is -2150, and when the curve crosses or cuts the x-axis, indicating that the population is extinct or has died out.

  2. Matrix Binomials

    So this pattern has been proved. In order to find the pattern for matrix Y the same pattern will be used, however, negative signs will be drawn into the matrix so that it compliments. Example: * = in this case n=1 because has a power of 1, therefore the answer to this would be = =.

  1. Maths SL Portfolio - Parallels and Parallelograms

    A7 ? A8 ?A9 = 3 - A1 ? A2 ? A3 ? A4 ? A5 ? A6 ?A7 ?A8, - A2 ? A3 ? A4 ? A5 ? A6 ? A7 ?A8 ?A9 = 2 - ? A2 ? A3 ? A4 ? A5 ? A6 ?A7 ?A8 ?A9 = 1 ==> 45 p = sum of all integers from 1 to (10 - 1)

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    This would be considered an outlier in the data. A probable reason for that outlier was the rather low amount of competitors for the 1904 Men?s High Jump; only 6 participants competed. Another factor was that the previous (1900) Olympic champion, Irving Baxter, did not participate in the 1904 event, hence an absence of a competitor who would be likely to score around 190 centimeters.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work