• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Portfolio SL - Matrix

Extracts from this document...


Math Portfolio SL





In this portfolio I will try to find a general statement and patterns for given matrix binomials exercises. For data processing I will use TI-83 Plus (Sliver Edition) graphing calculator. I will use my knowledge from patterns and matrix  in order to find suitable formulas.

X=image00.pngimage00.png, Y=image37.pngimage37.png.

Find X2, X3,X4;Y2, Y3,Y4.


X2=image94.pngimage94.png= image103.pngimage103.pngX3=image01.pngimage01.pngX4=image02.pngimage02.png

Find expressions for Xn , Yn, (X+Y)n

  • The entries double for every higher power of X, i.e.:

X2= 2X= 21X
3= 4X= 22X
4= 8X = 23X     follows

I will test this formula with a random number:                                    X10=image38.pngimage38.pngX10= 210-1image46.pngimage46.png= image38.pngimage38.png 

X19= 219-1image46.pngimage46.png= image71.pngimage71.png

Xn=2n-1Xformula valid for all natural numbers N;image79.png = {1,2,3,...} as it is shown in examples.

  • The entries double for every higher power of Y, i.e.:

Y2= 2Y
3= 4Y= 22Y
4= 8Y = 23Y

...read more.


A3=image05.pngimage05.png3= image06.pngimage06.pngA3= image03.pngimage03.png3= image07.pngimage07.png
A4= image05.pngimage05.png4=image08.pngimage08.pngA4= image03.pngimage03.png4=image09.pngimage09.png


b=3                                                         b=4
B=3Yimage12.pngimage12.pngB= image13.pngimage13.png                                   B=4Yimage12.pngimage12.pngB= image14.pngimage14.png
2=image13.pngimage13.png2= image15.pngimage15.pngB2= image14.pngimage14.png2= image16.pngimage16.png

B3=image13.pngimage13.png3= image18.pngimage18.pngB3= image14.pngimage14.png3= image19.pngimage19.png
B4=image13.pngimage13.png4= image20.pngimage20.pngB4= image14.pngimage14.png4= image21.pngimage21.png

Find expressions for An , Bn, (A+B)n

  • As I’m raising powers by one, the entries increase double the constant is.
    For example:

A= 6Ximage12.pngimage12.png A=image22.pngimage22.png     
2= image23.pngimage23.png              A3=image24.pngimage24.pngA4= image25.pngimage25.png
As it is visible, every entry increases by 12, i.e. double the constant
a is.

From this pattern I derived formula that:
An= anXn

Testing with random numbers:
A2=36image05.pngimage05.png= image23.pngimage23.png

=10Ximage12.pngimage12.png A=image26.pngimage26.pngA3=103X3                    
A3=image26.pngimage26.png3= image27.pngimage27.pngA3= image27.pngimage27.png

The same pattern goes for

B2=image30.pngimage30.png2= image31.pngimage31.png

B3=image30.pngimage30.png3= image32.pngimage32.png                     
B4=image30.pngimage30.png4= image33.pngimage33.png          The entries increase by 6, i.e. the double b is.    

The entries increase by app. 6.26, i.

...read more.


+Bk)(A+B)= AkA + BkB +AkB + BkA

We showed that AB=BA=0, therefore AkB + BkA=0

It follows that
AkA + BkB +AkB + BkA= AkA + BkB  
kA + BkB= Ak+1 + Bk+1
Mk+1= Ak+1 + Bk+1

By doing and deriving formulas (especially in the second exercise) I found that the general formula is:
Mn=anXn+ bnYn
 Mn=(aX+ bY)n







M= image66.pngimage66.pngM= image67.pngimage67.png

 M2= image68.pngimage68.png
image67.pngimage67.png2= image69.pngimage69.png2
image67.pngimage67.png2= image70.pngimage70.pngn

image67.pngimage67.png2= image67.pngimage67.png2
Using GDC:
M2= image72.pngimage72.png







M= image66.pngimage66.pngM= image73.pngimage73.png
image73.pngimage73.png5= image73.pngimage73.png5

M5= image76.pngimage76.png

In the conclusion I can say that I found the scope of the statement.
|A|= ab-cd      
= image77.pngimage77.png|Y|= image78.pngimage78.png                             
|X|= 1-1= 0                              |Y|= 1-1= 0                            

Since the starting matrices have determinant 0 and thus they don’t have inverse, in my conclusion I can say that n€image79.png. Also I showed in examples above that constants a and b can be rational and irrational numbers (image80.pngimage80.png, therefore a, b€R. I would limit my general statement on the set of real numbers this is the only set of number that we learnt in matrix unit.


Page |

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    TMRl��M6�Yc&#���#c�]���(��x7 �'���x��/��W�d�!�\6R�V'Q�&$@�%P5I�a�Xa�]^�5E� Ç¥8 )��x7 �'����"����bSH�a^'u8J2*�"H ��))nk,q,+��r9���js��o�v"1/4 ��� TSR�3/4�&"�D�1/4|� �U�����*�?�1/4 "���$E0L���31/4��t �� �0�?�| ,"�"�� ZUb(tm)A`'��+�1/4�۶n�z���K}���ZZZZ[[��}��mÛ¶m�Ν"v�*f|�Xx<-�B�X-�`-�1/4�H 'f!)�{�'�x�� L$R/_x�...3/43/43/4��^����"�z�(c)={�=z�""�'#Y:�c�BCa�"��c.��"��-�k^'/ ���...��(c)(c)A�\.�D2 ���W," |�}�����O1/4b���XM�=��4[�B>h�(r)�O��$@�$0 I!u��ޱc��-'QWWw��7�}�����x{����Z����b$.6f��qW���>�(c)� ���/�"" ("��$ų�>���?��R�z�-_~�n��yç¨ï¿½ �x'��bK�z�%W�S�"�_��t�mÌrx�OY P�YH��_� � �� ��^���;�x�(tm)g���ÆGGG�Q lÙ²E*CR@�H��c��F�'�Ö��J�:� (tm)|kH��H XI'�fo1/2�� -x@�V�[���f�/�Eqxx���"w���...-MW3/4��#i>��0�T U...�J���p���B �1/4�8�X�f D�^-8p`Ñ¢E��~;�'N�:�-�-���'���{/G{{�w3/4��C�-�� �u�z0k�el�A(c)�d�K�����|�e|K$P-S�n�� �`d�P��x<-�D���z(c)<��h��_�ܵ��"J�;$�<gO����'�5$@U!0/�N@�C��(r);�_...5-,�`�(tm)�!�(r) �m���S�%���$�b�e�" &��0�L�"��&bU�<�(+qÞfI@'�7� �l= �@�+h7'�x-��$@e$ I���0' ���b|�F��}�'{�8nÞH`6!)/h�Q��OB��ceôºï¿½ï¿½%(#EH �/J3"��"-��E&�>o^����$@�P��' s<'�� ��)D� c� �W' "��R$b�`A!�T�!m�>�l��% I�>v�`2"ò¤ª@�1/4�iܸ"Ø�: �2P����}a��(tm)��E�jg��)����$0J'�>g���P�jC����3/4���f3(tm)1/4-�F@A'BH�"T2���V��6�_X����$@�

  2. Math IA - Matrix Binomials

    (integer powers increase), then the corresponding elements of each matrix are: 1, -4, 16, -64, ... These terms represent the pattern between the scalar values multiplied to A=aX where a= -2 and hence A= to achieve an end product of An.

  1. IB Math SL portfolio

    This very small difference indicates that this equation does in fact represent the asymptote. By working the problem in reverse, it becomes possible to calculate which values of k in an infinite surd are equal to integers. According to the calculations above, it is already known that when k=2, the value of the infinite surd is also equal to 2.

  2. Math Portfolio: trigonometry investigation (circle trig)

    The signs of the coordinates on the negative x axis are (negative,0); the value of x equals a negative number and the value of y equals 0. The value of x equals a negative number on the negative x axis and the value of r equals a positive number as mentioned beforehand.

  1. Math Portfolio Type II

    Part 6 To initiate an annual harvest of 5000 fishes, let us first find out at what point the fish population stabilizes when the initial growth rate, r = 1.5. The following table shows the growth in the population over the first 20 years taking r = 1.5 and thus

  2. Math HL portfolio

    1 D = 1 So applying my assumption for this case D= In the parabola x�-6x+11=y a = 1 , b = -6 , c = 11 implying that the regular quadric consists of ax�+bx+c=y We know that D = 1 by using the formula given before Using the new

  1. Math 20 Portfolio: Matrix

    = 0.5n2 + 0.5n To have a correct general expression, it is essential that the statement be verified. In order to verify, we can use the already known value of 21 dots for the 6th stage. Therefore, simply substitute 6 for n into the derived general statement: LS= 0.5(6)2 + 0.5(6)

  2. Mathematic SL IA -Gold medal height (scored 16 out of 20)

    According to the table shown, we can notice that the gradient of the graph of winning height (figure 7) changes irregularly. Therefore, the graph cannot be interpreted into a linear function.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work