• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Portfolio SL - Matrix

Extracts from this document...

Introduction

Math Portfolio SL

MATRIX BINOMIALS

NONAME STUDENT

3/17/2009


MATRIX BINOMIALS

In this portfolio I will try to find a general statement and patterns for given matrix binomials exercises. For data processing I will use TI-83 Plus (Sliver Edition) graphing calculator. I will use my knowledge from patterns and matrix  in order to find suitable formulas.

X=image00.pngimage00.png, Y=image37.pngimage37.png.

Find X2, X3,X4;Y2, Y3,Y4.

image84.pngimage89.png

X2=image94.pngimage94.png= image103.pngimage103.pngX3=image01.pngimage01.pngX4=image02.pngimage02.png
Y2=image17.pngimage17.pngY3=image14.pngimage14.pngY4=image28.pngimage28.png

Find expressions for Xn , Yn, (X+Y)n

  • The entries double for every higher power of X, i.e.:

X2= 2X= 21X
X
3= 4X= 22X
X
4= 8X = 23X     follows
Xn=2n-1X 

I will test this formula with a random number:                                    X10=image38.pngimage38.pngX10= 210-1image46.pngimage46.png= image38.pngimage38.png 
image59.png

X19= 219-1image46.pngimage46.png= image71.pngimage71.png

Xn=2n-1Xformula valid for all natural numbers N;image79.png = {1,2,3,...} as it is shown in examples.

  • The entries double for every higher power of Y, i.e.:

Y2= 2Y
Y
3= 4Y= 22Y
Y
4= 8Y = 23Y

...read more.

Middle

A3=image05.pngimage05.png3= image06.pngimage06.pngA3= image03.pngimage03.png3= image07.pngimage07.png
A4= image05.pngimage05.png4=image08.pngimage08.pngA4= image03.pngimage03.png4=image09.pngimage09.png

image10.pngimage11.png

b=3                                                         b=4
B=3Yimage12.pngimage12.pngB= image13.pngimage13.png                                   B=4Yimage12.pngimage12.pngB= image14.pngimage14.png
B
2=image13.pngimage13.png2= image15.pngimage15.pngB2= image14.pngimage14.png2= image16.pngimage16.png

B3=image13.pngimage13.png3= image18.pngimage18.pngB3= image14.pngimage14.png3= image19.pngimage19.png
B4=image13.pngimage13.png4= image20.pngimage20.pngB4= image14.pngimage14.png4= image21.pngimage21.png

Find expressions for An , Bn, (A+B)n

  • As I’m raising powers by one, the entries increase double the constant is.
    For example:

A= 6Ximage12.pngimage12.png A=image22.pngimage22.png     
A
2= image23.pngimage23.png              A3=image24.pngimage24.pngA4= image25.pngimage25.png
As it is visible, every entry increases by 12, i.e. double the constant
a is.

From this pattern I derived formula that:
An= anXn

Testing with random numbers:
A2=62X2
A2=36image05.pngimage05.png= image23.pngimage23.png

A
=10Ximage12.pngimage12.png A=image26.pngimage26.pngA3=103X3                    
A3=image26.pngimage26.png3= image27.pngimage27.pngA3= image27.pngimage27.png

The same pattern goes for
B=bY.

image29.png
B=-3Y
B2=image30.pngimage30.png2= image31.pngimage31.png

B3=image30.pngimage30.png3= image32.pngimage32.png                     
B4=image30.pngimage30.png4= image33.pngimage33.png          The entries increase by 6, i.e. the double b is.    

image34.png
B
=image35.pngimage35.pngY
B≈
image36.pngimage36.png
B
2image36.pngimage36.png2image39.pngimage39.png
The entries increase by app. 6.26, i.

...read more.

Conclusion

+Bk)(A+B)= AkA + BkB +AkB + BkA

We showed that AB=BA=0, therefore AkB + BkA=0

It follows that
AkA + BkB +AkB + BkA= AkA + BkB  
A
kA + BkB= Ak+1 + Bk+1
Mk+1= Ak+1 + Bk+1

By doing and deriving formulas (especially in the second exercise) I found that the general formula is:
Mn=anXn+ bnYn
                                                         
 Mn=(aX+ bY)n


a

b

n

5

2

 2

   
M= image66.pngimage66.pngM= image67.pngimage67.png

 M2= image68.pngimage68.png
image67.pngimage67.png2= image69.pngimage69.png2
image67.pngimage67.png2= image70.pngimage70.pngn

image67.pngimage67.png2= image67.pngimage67.png2
Using GDC:
M2= image72.pngimage72.png

a

b

n

4

-1.5

 5

   
M= image66.pngimage66.pngM= image73.pngimage73.png
image73.pngimage73.png5=image74.pngimage74.png5
image73.pngimage73.png5= image73.pngimage73.png5
image75.png

M5= image76.pngimage76.png

In the conclusion I can say that I found the scope of the statement.
|A|= ab-cd      
|X|
= image77.pngimage77.png|Y|= image78.pngimage78.png                             
|X|= 1-1= 0                              |Y|= 1-1= 0                            

Since the starting matrices have determinant 0 and thus they don’t have inverse, in my conclusion I can say that n€image79.png. Also I showed in examples above that constants a and b can be rational and irrational numbers (image80.pngimage80.png, therefore a, b€R. I would limit my general statement on the set of real numbers this is the only set of number that we learnt in matrix unit.

                                     



Page |

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    TMRl��M6�Yc&#���#c�]���(��x7 �'���x��/��W�d�!�\6R�V'Q�&$@�%P5I�a�Xa�]^�5E� Ç¥8 )��x7 �'����"����bSH�a^'u8J2*�"H ��))nk,q,+��r9���js��o�v"1/4 ��� TSR�3/4�&"�D�1/4|� �U�����*�?�1/4 "���$E0L���31/4��t �� �0�?�| ,"�"�� ZUb(tm)A`'��+�1/4�۶n�z���K}���ZZZZ[[��}��mÛ¶m�Ν"v�*f|�Xx<-�B�X-�`-�1/4�H 'f!)�{�'�x�� L$R/_x�...3/43/43/4��^����"�z�(c)={�=z�""�'#Y:�c�BCa�"��c.��"��-�k^'/ ���...��(c)(c)A�\.�D2 ���W," |�}�����O1/4b���XM�=��4[�B>h�(r)�O��$@�$0 I!u��ޱc��-'QWWw��7�}�����x{����Z����b$.6f��qW���>�(c)� ���/�"" ("��$ų�>���?��R�z�-_~�n��yç¨ï¿½ �x'��bK�z�%W�S�"�_��t�mÌrx�OY P�YH��_� � �� ��^���;�x�(tm)g���ÆGGG�Q lÙ²E*CR@�H��c��F�'�Ö��J�:� (tm)|kH��H XI'�fo1/2�� -x@�V�[���f�/�Eqxx���"w���...-MW3/4��#i>��0�T U...�J���p���B �1/4�8�X�f D�^-8p`Ñ¢E��~;�'N�:�-�-���'���{/G{{�w3/4��C�-�� �u�z0k�el�A(c)�d�K�����|�e|K$P-S�n�� �`d�P��x<-�D���z(c)<��h��_�ܵ��"J�;$�<gO����'�5$@U!0/�N@�C��(r);�_...5-,�`�(tm)�!�(r) �m���S�%���$�b�e�" &��0�L�"��&bU�<�(+qÞfI@'�7� �l= �@�+h7'�x-��$@e$ I���0' ���b|�F��}�'{�8nÞH`6!)/h�Q��OB��ceôºï¿½ï¿½%(#EH �/J3"��"-��E&�>o^����$@�P��' s<'�� ��)D� c� �W' "��R$b�`A!�T�!m�>�l��% I�>v�`2"ò¤ª@�1/4�iܸ"Ø�: �2P����}a��(tm)��E�jg��)����$0J'�>g���P�jC����3/4���f3(tm)1/4-�F@A'BH�"T2���V��6�_X����$@�

  2. Math IA - Matrix Binomials

    (integer powers increase), then the corresponding elements of each matrix are: 1, -4, 16, -64, ... These terms represent the pattern between the scalar values multiplied to A=aX where a= -2 and hence A= to achieve an end product of An.

  1. Math Portfolio: trigonometry investigation (circle trig)

    0.2250=0.2250 When 54 is to represent the value of x and 36 is to represent the value of y in the conjecture sinx=cosy, sin(54) would equal to sin(36) Again this should add up to 90 degrees. sinx=cosy sin(54)=cos(36) sin ?=cos(90- ?)

  2. Maths SL Portfolio - Parallels and Parallelograms

    A4 ? A5 ? A6, - A3 ? A4 ? A5 ? A6 ? A7, - A4 ? A5 ? A6 ? A7 ? A8, - A5 ? A6 ? A7 ? A8 ? A9 = 5 - A1 ? A2 ? A3 ? A4 ? A5 ? A6, - A2 ? A3 ? A4 ? A5 ?

  1. IB Math SL portfolio

    In order to find the value of the asymptote, it the formula needs to be simplified like the previous formula. an+1 = 2 + an Assign variable a to an+1 and an. ( a = 2 + a )2 a2 = 2 + a a2 - a - 2 =

  2. Mathematics SL Portfolio part I

    Subsequently, the range of the data extends between the BMIs of 15.20 and 21.65; R: . Due to the fluctuating behaviour of this graph, we may judge it to strongly resemble, at least in part, the undulating appearance of the cubic curve of a polynomial to the third degree (an example of which is depicted in the image below).

  1. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    One simple yet highly effective modification would be to take another polynomial regression to all the data points and hence derive a polynomial function that would best serve the new data points. However, doing that will yet not solve the problem when more data is introduced into the equation.

  2. Mathematic SL IA -Gold medal height (scored 16 out of 20)

    Let?s consider linear function; Figure 6 the graph of a linear equation, y=x The linear equation has a line graph. The general form of linear equation is y=ax+b. In the equation, ?a? is a constant which is called gradient. Linear equation can have both upward and downward sloping graphs when

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work