• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Properties of quartics

Extracts from this document...

Introduction

Ecolint – DP 2009/10

Properties of Quartics

Math HL – Portfolio Assignment

Kathia Zimba

6/23/2009


Introduction

Quartic functions are functions that the highest exponent is 4. These types of functions are of the formimage08.png

The graphs of a Quartic functions usually exert two shapes; “W” shape or “M” shape. For this investigation, an analysis of a “W” shaped function is to be carried out to explore the properties of the function. The points of inflection of the Quartic function, will be looked at very closely so that the ratio between the distances of the points if intersection when the Quartic graph is cut by a straight line is found.

Analysis

Let’s take image22.pngimage22.png. The second derivative of this function image45.pngimage45.png will gives the points inflection at image53.pngimage53.png; provided image63.pngimage63.png.image09.pngimage00.png

FIND 2ND DERIVATIVE OF image10.pngimage10.png

image22.png

image27.png

image32.pngimage32.png

image33.pngimage33.png

image34.pngimage34.png

image35.pngimage35.png when image36.pngimage36.png and image37.pngimage37.png

At image38.pngimage38.png and image39.pngimage39.png

...read more.

Middle

image42.png. When this straight line is drawn, the line meets the Quartic again at another two points P and S creating three identical segments.

It is important the coordinates of these two points, so that the ratio PQ:QR:RS is determined. The next step for completing this investigation is to calculate the equation of the straight line. From the equation of the straight line, the coordinates of point P and S will be obtained, hence, the distance between PQimage49.pngimage49.pngQRimage49.pngimage49.pngRS, thus, leading to the ratio segments.

So, the graph of image50.pngimage50.png with the points of inflection would look like this.


image51.pngimage00.pngimage05.pngimage06.pngimage04.png

image07.png

image05.png


As mentioned before a line is to be drawn, passing through the points of inflection (Q and R). After this is done the equation of the line can be calculated.

...read more.

Conclusion

image03.png

image73.pngimage73.png

The quadratic equation will be used to obtain the roots which are equivalent to the missing points P and S.

image11.pngimage11.png

image12.pngimage12.png

image13.pngimage13.png

image14.pngimage14.png or image15.pngimage15.png

The two roots found (above) are the x coordinates of the missing points and they happen to be irrational numbers.

 P since image16.pngimage16.pngimage17.pngimage17.png

image18.pngimage18.pngimage19.pngimage19.png

image20.pngimage20.png

image21.pngimage21.png

image23.pngimage23.png

S since image24.pngimage24.pngimage18.pngimage18.png S image25.pngimage25.png

image26.pngimage26.png

image20.pngimage20.png

image28.pngimage28.png

image29.pngimage29.png

        Once found the points P and S, the new graph would look like the one below.

The goal of this investigation is with the points of inflections and the extension of the line passing through them –image31.pngimage31.png  – the ratio between the points would be found. The distance formula has its roots from the Pythagoras’ theorem. Hence, if a triangle is drawn between the points linking them, a triangle should be visible (see the graph below). Again, the y coordinates can be ignored as to they are not exact. Thus, when calculating the ratio the x coordinates are used.image30.png

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Zeros of Polynomials

    = 0 if an-1 + an-3 + ... + a1 = an + ... + a2 + a0 then P(-1) = 0 2. There is a conclusion that states: If an integer k is a zero of a polynomial with integral coefficients, then k must be a factor of the constant term of the polynomial.

  2. Extended Essay- Math

    ~ �'ĸ(� ��(��-;8�7^�3/4�0���� ;xZ %&'0B�O� Bä�'#�(c)0�!X�/��G�#--���,�or�� S(3/4�ȤP����� 2(tm)ØFI����"��#���EFZÚ0�۰"��?�� ��F�_6Cx ÎgG"���#|mw��ucL��...�� w0�� ��8;����)�F��E���&� �Xï¿½Ø ï¿½_��wpF�0�{bM�x�>%��o�o���a8�jj� &S�,v�bFl.i��2� �@� i#� �F���V �"��ÅP���ÈHdL$����3�_�_ãq�)'�!1/4��{6~d�?2(c)���d��3/4�b1/2(c)���Ç1/4_��_��-��Z��VA�uкh ��fEs�2Zm��Ck!}�1/4G$ ��qG~���"��dM-`�w���.��(c)�<�/ ux�}��$!��Ȩ�jPp��r��-"�d���v���\;1ë·²_~�"��ѿh!(c)��!�x�_��q�^!�"�_4��;����"�[-�$�#-�x�GÞ³"PZ@�K� 8w� �`� c@"� �@.� � PN�P��� n�^p <#�)�S`|��;X� ' &��D )HR�t!�r��!(���1/2�>(*"* �Pt�"z�{�c�9���-��0 �...(tm)a-X-��a� v�1/2� 8N�s�� (r)���6�~?...��O� �(V"J��2B�By Q1�t�!T �u�...��CM�Pkh,� Í-A���CG��Ñ��zt�=�~�^DoaHn�Fc�q�a1��L�3�y�(tm)�|�b��X1��� ��bc"�-�-�c�4v��q�p:�]8 .

  1. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    a 5-vertices shape), will be shown: Stage Number Number of Dots Notes and observations 5S0 1 None 5S1 6 Adding 5 to previous 5S2 16 Adding 5x2 to previous 5S3 31 Adding 5x3 to previous 5S4 51 Adding 5x4 to previous 5S5 76 Adding 5x5 to previous 5S6 106 Adding 5x6 to previous Again, another 'side' association related.

  2. The Straight Line

    Positive slopes (like the ones above) mean that the line slopes uphill, from left to right. Meanwhile if negative, the line slopes downhill, from right to left. The slope of a line is usually represented as the letter 'a', and is defined as being the change in the y coordinate (rise)

  1. Stopping Distances

    / 55 � - 9.124 % (80, 38) y = 0.0039(80)2 + 0.188(80) - 4.0096 y = 24.96 + 15.04 - 4.0096 y = 35.9904 (35.9904 - 38) / 38 � - 5.288 % The Function, y = 0.0039x2 + 0.188x - 4.0096, used to represent these data points is a parabolic function.

  2. Investigating ratio of areas and volumes

    Area B will be the area contained between the graph of y = x1/n and the x-axis between the points x = 0n (= 0) and x = 2n. n Area A Area B Area A / Area B 2 5.333 2.667 2.0 3 12 4 3.0 4 25.59 6.4

  1. The segments of a polygon

    with ratio of areas and I get: = (d) Prove this conjecture analytically. For simplification in calculating I will use : =,=, =, = y=== x=== p=== To get the relationship between the ratios of the sides and the ratio of the areas I have to first get relationship between and .

  2. Properties of Quartics

    R (3, 15) Line QR Equation of a Line Passing through Two Points: y - y1 = (y2 - y2)/(x2 - x1) * (x - x1) Plug in Known Values y - 15 = (23-15)/(1-3) * (x-3) y = -4x + 27 Find P and S Set f(x)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work