• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Series and Induction

Extracts from this document...

Introduction

image00.png

INTRODUCTION

The definition of sequence is a list of numbers written in a particular order. These numbers are called the terms of the sequence. For example, 2,4,6,8 are the first four terms of positive even integers. When the sum of the terms in a sequence is taken, we will get something called a series. For example, 2+4+6+8+… is a series. The terms in a sequence is denoted by Tn where n is the number of the term in question.

In my portfolio there are certain conventions used such as:

‘+’ denotes addition

‘–‘ denotes subtraction

‘x’ denotes multiplication

‘/’ denotes division

‘∑’ denotes summation

image02.png’ denotes equal to

OBSERVATION & ANALYSIS

Q1.  Consider the sequence {an}n=1 where

        a1 = 1 x 2

        a2 = 2 x 3

        a3 = 3 x 4

        a4 = 4 x 5

        .

        .

        .

Find an expression for an, the general term in the sequence.

A1.

Let p = 1

a1 = 1 x 2 = p(p+1)

a2 = 2 x 3 = (p+1)(p+2)

a3 = 3 x 4 = (p+2)(p+3)

a4 = 4 x 5 = (p+3)(p+4)

.

.

Thus,

an = (p+n-1)(p+n)

Since p = 1

Therefore,

an = n(n+1)

Q2. Consider the series Sn = a1 + a2 + a3 +…+ an where ak is defined as above.

       (a). Determine several values of Sk, including S1, S2, S3, …, S6 and note observations.

       (b). Formulate a conjecture for a general expression for Sn.

       (c). Prove your conjecture by induction.

       (d). Using the above result, calculate 12 + 22 + 32 + …+ n2.

A2.

(a).

Sn = a1 + a2 + a3 + …………. + an

S1 = a1 = 1 x 2

 = 2

S2 = a1 + a2 = (1 x 2) + (2 x 3)

                = 2 + 6

                = 8

S3 = a1 + a2 + a3 = (1 x 2) + (2 x 3) + (3 x 4)

                       = 2 + 6 + 12

                    = 20

S4 = a1 + a2 + a3 + a4 = (1 x 2) + (2 x 3) + (3 x 4) + (4 x 5)

                            = 2 + 6 + 12 + 20

                            = 40

S5 = a1 + a2 + a3 + a4 + a5 = (1 x 2) + (2 x 3) + (3 x 4) + (4 x 5) + (5 x 6)

                                = 2 + 6 + 12 + 20 + 30

                                = 70

S6 = a1

...read more.

Middle

, …, T6 and note observations.

       (b). Formulate a conjecture for a general expression for Tn.

       (c). Prove your conjecture by induction.

       (d). Using the above result, calculate 13 + 23 + 33 + …+ n3.

A3.

(a).

Tn = 1x2x3 + 2x3x4 + 3x4x5 +….+ n(n + 1)(n + 2)

T1 = 1 x 2 x 3

     = 6

T2 = (1 x 2 x 3) + (2 x 3 x 4)

     = 6 + 24

     = 30

T3 = (1 x 2 x 3) + (2 x 3 x 4) + (3 x 4 x 5)

     = 6 + 24 + 60

     = 90

T4 = (1 x 2 x 3) + (2 x 3 x 4) + (3 x 4 x 5) + (4 x 5 x 6)

     = 6 + 24 + 60 + 120

     = 210

T5 = (1 x 2 x 3) + (2 x 3 x 4) + (3 x 4 x 5) + (4 x 5 x 6) + (5 x 6 x 7)

     = 6 + 24 + 30 + 120 + 210

     = 420

T6 = (1 x 2 x 3) + (2 x 3 x 4) + (3 x 4 x 5) + (4 x 5 x 6) + (5 x 6 x 7) + (6 x 7 x 8)

     = 6 + 24 + 60 + 120 + 210 + 336

     = 756

A graph between Tn and n showing how Tn changes with a change in n.

image01.png

(b).

Tn = (1 x 2 x 3) + (2 x 3 x 4) + (3 x 4 x 5) +…+ n(n + 1)(n + 2)

Tn = ∑ n(n + 1)(n + 2)

     = ∑ (n3 + 3n2 + 2n)

     = ∑ n3 + 3∑ n2 + 2∑n

We know that n4 – (n-1)4 = n4 – n4 + 4n3 – 6n2 + 4n – 1

                                = 4n3 – 6n2 + 4n – 1

Thus,

            14 – 04   = 4(1)3 – 6(1)2 + 4(1) – 1

            24 – 14   = 4(2)3 – 6(2)2 + 4(2) – 1

            34 – 24   = 4(3)3 – 6(3)2 + 4(3) – 1

                        .

                        .

                        .

         + n4 – (n-1)4 = 4(n)3 – 6(n)2 + 4(n) – 1

        n4 – 04 = 4(13 + 23 +…+ n3) – 6(12 + 22 +…+ n2) + 4(1 + 2 +…+ n) – n

image02.png n4 = 4∑n3 – 6∑n2 + 4∑n – n

image02.png n4 = 4∑n3 – [6n(n + 1)(2n + 1)/6] + [4n(n + 1)/2] – n

image02.png n4 = 4∑n3 – [n(n + 1)(2n + 1)] + [2n(n + 1)] – n

image02.png ∑n3 = [n4 + n + (2n3 + 3n2 + n) – (2n2 + 2n)]/4

               = (n4 + n + 2n3 + 3n2 + n – 2n2 – 2n)/4

               = (n4 + 2n3 + n2)/4

               = [n2(n2 + 2n + 1)]/4

        ∑n3 = [n2(n + 1)2]/4

Hence,

Tn = ∑n3 + 3∑n2 + 2∑n

     = [n2(n + 1)2/4] + [3n(n + 1)(2n + 1)/6] + [2n(n + 1)/2]

     = [n2(n + 1)2/4] + [n(n + 1)(2n + 1)/2] + [n(n + 1)]

     = [n2(n + 1)2 + 2n(n + 1)(2n + 1) + 4n(n + 1)]/4                (taking 4 as the LCM)

     = n(n + 1)[n(n + 1) + 2(2n + 1) + 4]/4

     = n(n + 1)(n2 + n + 4n + 2 + 4)/4

     = n(n + 1)(n2 + 5n + 6)/4

     = n(n + 1)(n + 2)(n + 3)/4

Tn = n(n + 1)(n + 2)(n + 3)/4

(c).

1x2x3 + 2x3x4 + 3x4x5 +…+ n(n + 1)

...read more.

Conclusion

k-2 +…. + n(-1)k+1

                                      k+1

Hence,

1k + 2k + 3k +…+ nk = nk+1+ [k(k+1)/2] ∑nk-1 – [k(k+1)(k-1)/6] ∑nk-2 +…. + n(-1)k+1

                                                              k+1

CONCLUSION

After going through my portfolio, I hope I have satisfied the basic needs required and have presented the portfolio well. I have learnt a lot of things while doing this investigation. Firstly, my knowledge about sequences and series have been broadened and I am now craving for more knowledge on general formulas of these sequences. There is a lot to learn from this portfolio. We can use the general formulas of Sn, Un and Tn in our everyday lives. We should observe the beauty of the portfolio, the beauty of the patterns, the way they progress at every stage. I was so inspired that I looked up on the internet for more methods to solve this portfolio. Infact I even studied the binomial theorem and the pascal’s triangle deeply as it interested me. While surfing on the internet I found something very interesting. The method I used to find the conjectures of Sn, Un and Tn has a name and is called the Telescopic Method.

REFERENCE:

http://www.xula.edu/math/Research/Colloquium/Past/Colloquium20030320-Paper-SahooP.pdf

http://www.mathpages.com/home/kmath279.htm

http://mathworld.wolfram.com/PowerSum.html

http://mathworld.wolfram.com/BinomialTheorem.html

All graphs have been made with the help of Microsoft Excel 2003

All major calculations have been done with the help of Graphic Display Calculator TI-84 Plus.


[1]k+1C1 = (k+1)!/[(k+1-1)!x1!] = (k+1)k!/k! = k+1

k+1C2 = (k+1)!/[(k+1-2)!x2!] = k(k+1)(k-1)!/[(k-1)!x2] = k(k+1)/2

k+1C3 = (k+1)!/[(k+1-3)!x3!] = k(k+1)(k-1)(k-2)!/[(k-2)!x6] = k(k+1)(k-1)/6

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    !`(d�� ������G�ÆÇo�I`�-(tm)(tm)����PH����U|G_É���Kbb�s�=���/ u�ܹ�)))999����� A�r��sÕªU(c)(c)(c)>\�r���"BH��������J�i���~�&" .�:u�\��V!�\��s��-qpp(W��$�@�|(�Q�CÙ¸q�--[-<xp��ᰰ��'- ��(c)P����e+��5k�L(tm)r�ÆZ�j�M�gB@ È"�b�<v�بQ�>��"m۶�""WX��'#���}*�,$ 4(??�W'�3/4"X!@S-VHZOnn(r)��-�&gΜ���3/4w�v�k�(r)�N�0���vvv� Vl"fÍU�� ����S|m1/2{�vtt�\�o1/2���Å�m}��W�����VVV�?^1/2zu...Nq5S)B ÈR8"��CA{�����"�� (r)� =y�iӦ�+��"�3/4��س�B(�(r)�r F��� V �F� o#y #@"�`�h"o��1'-P0D( V �F� o#y #@"�`�-Zqq���? �`5���>>>^�"|&��Ca�|��P�&'�'�^1/2z���~~~�z "� {]�%�&8d�'R8�s��9M =�A�D ���Y9jP�$666yyyJ-�dS &J(�+��Ѩ�-� � ^"vM�аa�N�8A�zP�"�[G�-E@yD?�ر#,�]^�'''���u�Ա����������z�A� (tm) B����-# Ò {q�(r)]z-׳`e�u��( �a �#"'""]>hÊ£7�ӦM�-tÑ¢E3/43/43/4Xp� ��vʣ�|T�0-D(zc��}�@�Y�fDDD@@�vy"mL(�D B�[ѳg϶��D<�Í7��"�y��1��Í�(c)K;"��+z T��~�-**jٲ�K-P 7�a+�� � �� @NY�t ��"��@ ��V��""rjA��T��ڵkÏ9�q 9�(r)[�N��"�P54��^�t`�TJ��<b0�2�@�...1/2�P�cJ5r��P8Q�I� Z" N B�DQ$&!�D(<h�d$8A�...E'�"�� %''�"NEb<

  2. How many pieces? In this study, the maximum number of parts obtained by n ...

    (2 + 4 + 7 + 11 + 16 + ...+k + (k + 1)) = (2 + 4 + 7 + 11 + 16 + ...+k) + (k + 1) Substitute n = k case to get (1/2)k 2 + (1/2)k + 1 + (k + 1)

  1. Infinite Summation Portfolio. I will consider the general sequence with constant values

    This happens because the values are getting smaller rather than being bigger due to the factorial notation in the denominator. As the denominator gets bigger we obtain results with smaller numbers. From this information we can say that the values tend to move to 2 if the variable is , likewise the way approaches to .

  2. Infinite summation portfolio. A series is a sum of terms of a sequence. A ...

    again, but for : We plot the relation between Sn and n for this case (using Excel 2010) Looking at the graph, we can see the same happening as in the previous graph, however Sn 's asymptote was moved 1 unit further upwards till it reached .

  1. Infinite Summation - In this portfolio, I will determine the general sequence tn with ...

    Consider the sequence where and : Using GDC, I will calculate the sums S0, S1, S2, ..., S10: S0 = t0 = 1 S1 = S0 + t1 = 1 + = 2.945910 S2 = S1 + t2 = 2.945910 + = 4.839193 S3 = S2 + t3 = 4.839193

  2. Infinite Summation

    �6]\o��IEND(r)B`�PK!�*�� (word/embeddings/Microsoft_Equation39.bin�p^�ÂRÐ3ÿ�� lH�@6������?X H(tm)�`...�_ [A� �C��N�B�2.(tm)4+<σ��s '���dp�P����y��O32� � � 9 (c)P-��B bM�*dÚÄ��ÉÇÆO�v�:!&FP��p < �z�1/4+C!C)C"C C&�<?(���PQ � 2��� z�1/4�EH�...� �)P�'��� ��&F-.F� ���B�y@'(c)��ŢvT�1/4��PK !4���word/media/image51.png�PNG IHDR1 !�r%iCCPICC Profilex..."MHa�����-��$T& R�+S�e�L b�}w�g�(tm)�-E""�u�.VD��N�C�:D(tm)u� �E^"��;""cT3/403�y���|1/2�U�R�cE4`��"�ÞvztL�U�F\)�s:��(c)��k�-iYj"��6|"v(tm)P4*wd>,y<��'/�<5g$(c)4�!7�C�N�-��l��C��T�S"3-q";�-E#+c> �vڴ��=�S԰��79 ڸ�@�-`Ó�m�-�v�Ul�5��`�P�=��G���j��)�k�P*}�6�~^/�~�.�~�a ���2 n�ײ0�%��f������|U ��9�l��7?���j`�'�l7���"�t�i��N�f]?�u�h...�gM Zʲ4��i(r)�"[�&LY��_�x� {x�O��$1/4�̥߬S]�%��֧���&7��gÌ>r=��*g8`�(tm)� 8rʶ�<(c)�����"d�WT'"�<� eL�~.u"A(r)�=9(tm)�-�]��>31�3'�X3����-$e�}��u,��gm'g...6�64$Ñ�E zL*LZ�_�j���_��]1/2X��y�[�?...Xs ���N��/� �]��|m�3/4�(tm)sÏ�"k_Wf-�ȸA�23/4�)�o�� z-di�������2�|m٣��j|5Ô¥ej�8��(r)e�E��7��[���Q�|�IM%ײ�xf)�|6\ k��"`Ò²"�ä.<k��U�}j�� M=��"mjß��Ü�� ��e�)�`c���IWf����/���^a �44�M���i ��6p�"��_� ޡ���IDAT8�"�.EA���D""�ÒJ�S'(4 ���z�m...�(u* -/@(c)O t�gn�(r)8GD�ɿ"��;���9�ë£ï¿½93>5qV"����#x>�w��

  1. There are n cards in a pile. The cards are numbered 1 to n ...

    Deriving of formula for least number of moves for 3 piles. As shown in Table 1, the least number of moves is always a power of 2. Or more precisely, (n-1)th power of 2. Therefore, the least number of moves for the Problem for 3 piles can be calculated using

  2. Infinite Summation- The Aim of this task is to investigate the sum of infinite ...

    Again, the sum of the first 11 terms, 0?n?10, starting with S0 and ending with S10, will be calculated with the help of the GDC. The same method and notation will be used, as in the sequences before. S0= t0=1 S1= 1+t1=3.302585 S2=S1+t2=5.953534 S3= S2+t3=7.988213 S4= S3+t4=9.159468 S5= S4+t5=9.698851 S6=

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work