• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Shady Areas

Extracts from this document...

Introduction

Shady Areas

I shall investigate different ways of finding a working rule to approximate the area under a curve using trapeziums.  The area under the curve represents area between the f(x) and x values under the curve in the specified area.  Therefore, through integration to find the area, integration of the integrated area will find the volume.

                        Consider the function   g(x) = x² + 3

g(x) = x² + 3  (see Graph 1)

The area under this curve from x=0 to x=1 is approximated by the sum of the area of two trapeziums.

The approximation can be discovered by working out the area of the square in the trapezium and then by working out the triangle in the trapezium.

...read more.

Middle

image03.png

=            x  ½

=            x

Y1 =                    When n = 8 using the general formulaimage05.png

image05.pngimage06.png

image07.png

image43.pngimage08.png

image09.png

Therefore            

                             = 1/8 x 15.8394

                             = 1.9799image44.pngimage11.png

image12.png

Y2  =

image12.pngimage05.png

                   =  1/8  x  [y0 + 2y1 +2y2 + 2y3 + 2y4 + 2y5 + 2y6 + 2y7 + y8]

image13.png

image45.png

image14.png

image15.png

Y3 =

image05.png

image17.png

Integration of these functions to find the

...read more.

Conclusion

160;           = (9x/√(x³ + 9)) =  ?

image05.png

image20.png

Y3 =  m        (4x³ - 23x² + 40x - 18)

image19.pngimage18.pngimage22.png

     =    x^4 – (23/3)x³ + 20x² - 18x

=  (81 – 207 + 180 – 54) - (1 - (23/3) +20 – 18)

     = 0 – (-4.667)

     = 4.67

image23.pngimage26.pngimage27.pngimage25.pngimage28.png

image32.pngimage32.pngimage32.pngimage32.pngimage32.pngimage29.pngimage33.pngimage30.pngimage05.pngimage31.png

image37.pngimage05.pngimage35.pngimage36.pngimage34.pngimage35.png

              (9x/√(x³ + 9))

image38.pngimage39.pngimage37.pngimage05.pngimage40.pngimage41.png

              (4x³ - 23x² + 40x - 18)image37.png

The first approximation was 15.6% off from the integrated answer while the third approximation was 7.7% off from the integrated answer.  The third would be closer as the curve has a minima and maxima and, as the trapeziums overestimate with maxima and underestimates with curves with a minima, and so reduces the percentage error as it cancels it out.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IB SL Shady Areas Portfolio

    + g(0.2)], the second as [g(0.2) + g(0.4)], and so on until the 5th trapezoid as [g(0.8) + g(1)]. This gives the following calculation: Factoring out and: The area approximated by using 5 trapezoids differs in value to the approximation using only 2 trapezoids. Examine the following diagrams of the approximated area using 1-8 trapezoids: Diagram

  2. Investigating ratio of areas and volumes

    Now the conjecture must be tested for different arbitrary points. Consider the points between x = 0 and x = 2. Area A will be the area contained between the graph of y = xn and the x-axis between the points x = 0 and x= 2.

  1. Investigating the Ratios of Areas and Volumes around a Curve

    Because occurs, we cannot have n=-1 (for the moment). Graphically it can be seen that A would always equal 0, so the rule would still hold. As we cancel the terms in the final stage, a must not equal b.

  2. type 1 maths portfolio trapezium rule

    approximate the area under the curve of the function , the better approximation and the nearer you come to the area derived when calculated using the integral. With help of technology, the area under a curve approximated using the trapezoid rule requires splitting the interval into n subintervals of length based on equally spaced points with corresponding ordinates.

  1. Investigation of Area Under a Curve and Over a Curve

    Throughout the rest of the investigation will be using the method 2 to solve the area of A. I will use the second method to find the area for the first few values of n following 2. The next equation I will find the ratio for is.

  2. Shady Areas. In this investigation you will attempt to find a rule to approximate ...

    (h1 + h2) =(1/2) (0.5) (3 + 3.25) = 1.5625 TA= AA + AB TA= 1.5625 + 1.8125 TA= 3.375 Increase the number of trapeziums to five and find a second approximation for the area. In the next part, the number of trapeziums has increased to five and the goal is to find a second approximation for the area.

  1. Approximations of areas The following graph is a curve, the area of this ...

    Remember the width or base is the same for all the trapezoids. Area of a trapezoid (1) Area of Trapezoid (2) Area of Trapezoid (3) A(2)= A(2)= .604 .620 Area of trapezoid (4) Area of trapezoid (5) 00 Again we add all Trapezoids to retrieve the approximated area of the graph.

  2. The investigation given asks for the attempt in finding a rule which allows us ...

    Additional trapezoids make the approximated area more accurate as the values decreases slowly, although very minimal. Possibly due to the fact that the graph is a positive curve, hence trapezoid does not extend much past the curve. Furthermore, the distance between each trapezoid can be determined via the formula: position

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work