• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Stellar numbers. The aim of the current investigation is to consider different geometric shapes, which lead to specific numbers, to formulate the universal formulas

Extracts from this document...

Introduction

Miras International School Almaty 2012

INVESTIGATION

Subject: Mathematics SL

Topic: Stellar Numbers

Name: Elena Arkhangelskaya

Grade: 11 IB

Date: 26th of March

Mathematics SL Investigation

Stellar Numbers

A number sequence is a list of numbers where there is a pattern.[1] We study variations of different sequences and series, such as: geometric, arithmetic and others. We learn different formulas to find the unknown values of the term number, the sum of the terms. And the only reason we do that is to make our live easier and convert huge sequences of numbers into short and exact formulas. In the current investigation I’m going to analyze different kinds of the sequences, which include not only numbers but geometric shapes and stellar numbers as well.

Aim

The aim of the current investigation is to consider different geometric shapes, which lead to specific numbers, to formulate the universal formulas to every specific group of geometric shapes and to test the validity of the gotten general statement.

Procedure

...read more.

Middle

n = 5

u₅ = 15

u₅ = u₄ + n = 15

n = 6

u₆ = 21

u₆ = u₅ + n = 21

n = 7

u₇ = 28

u₇ = u₆ + n = 28

n = 8

u₈ = 36

u₈ = u₇ + n = 36

The general statement that represents the nth triangular number in terms of n is un  = un-1   + n

  1. The second task is to consider stellar (star) shapes with p vertices, leading to p-stellar numbers. Stages S₁-S₄ represent the first four stages for the stars with six vertices.

image03.pngimage04.pngimage13.pngimage08.png

image00.png

            S₁                            S₂                                      S₃                                                      S₄        

  • To find the number of dots in each stage up to S₆.

Term Number

Number of Dots

n = 1

S₁ = 1

n = 2

S₂ = 2(n-1) 6 + S₁ = 12

n = 3

S₃ = 2(n-1) 6 + S₂ = 72

n = 4

S₄ = 2(n-1) 6 + S₃ = 120

n = 5

S₅ = 2(n-1) 6 + S₄ = 180

n = 6

S₆ = 2(n-1) 6 + S₅ = 252

  • To find an expression for the 6-stellar number at stage S₇.

S₇ = 2(7-1) 6 + S₆

  • To find a general statement for the 6-stellar number at stage S  in terms of n

S  = 2(n-1) 6 + S

  • To repeat the steps above for other values of p (p=5; p=7)
...read more.

Conclusion

. 2 is multiplied by the

(n-1), which means that the number of dots on the each ray is subtracted by 1, because the internal vertices of the star are divided into two rays as well, so that the number of dots is not surplus. 2(n-1) is multiplied by the number of vertices (p) and the previous stage of the sequence (S      ) is added.

Conclusion

The aim of the investigation was to consider different geometric shapes, which lead to specific numbers, to formulate the general statements to every specific group of geometric shapes and to test the validity of the gotten formula. By considering different types of geometric shapes such as triangular numbers, 6-vertices stellar shapes, 5-vertices stellar shapes and 7-stellar shapes, we proved that the use of arithmetic and geometric sequences is not limited by only working with numbers, different geometric forms can be measures as well. The general statement S  = 2(n-1) p + S     was produced, and also tested on validity and limitations.

Bibliography

  • Mathematics SL electronic book
  • Stellar Numbers Task Sheet. For final assessment in 2011 and 2012


[1] Math SL HaH Text

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �>;�1/4{a�s� x����O � �V� �4_��Z���j]"�5�=/�WÄ%�;�>x(r)|�;�"�K"� ~9���� ��_��(r)"�K�|�A�����1/4�n����;3/4��<ڷ��"�1/4-�Ic��.�����4�-�g3�'���^��?f��A��W�>,xgT��.��xi<)-Q�o��z_��:J �K�+�...��"���~�e�"M6...(c)%� �P@P@P@P@P@P@P@P@/�w����Å�p����(r)P �E� �:�����l?�7�-������ ��� �]iV: *{(r)�ǧ�-zF�u�_�1���J���mB�K�A�;kD�g�cT. V�?%1/43� ��"_�(r)�E�~���I��x�Å/�-��"?�3/4�b� >"�iW�I�"���!.��XG(r)�-����'9(r)u(/@)k_ ��v:��/ˬ�k��:�5�7"�|P�5-�-? 1/4�j�x�XÔ�;t�l�g�'� W�I<�x$$ٸ��\�}%�B�-?gmS���<W�_"_�� �4Z�Ïx��zÇu �&�O��|:�1/2"մ�2��� U"I� &��\A ����y]�� k�/3/4C��3/4-���/���<'+��N�(tm)�����V���}R�K��Nm�z#�� k3/4w�$�]NI�ep>��*�k�=x��\1/43/4�A�3/4+�?�3/4x�< �j�*�...<Y#\j�^0����(tm)o�;�y-����Gq"�^���E}��]�6"��|G{����<U%Ç��y�!���[[}Y�$�|i��e��3/4�����Ðl�5$]i--'kM>[xt�5m@:����/��W�1��|1��x"��&���o�1/4I���~�>� �� ��z���ú�"5-]cF�-...�"�xo��|C�Q�"����W"1/4q��DÑ´OG� �w~5��.|a�K�t����^�1/2-��P'�t-T��~5\��XZ��.��5�H�'��Z( � ( � ( � ( � ( � ( � ( � ( �?-��;�P���8o��t�(������O�6Û����_�W�...ptP���&�"�5��1/49.��G� #mqz/4G��U�6v�%���, �_f���'��B�#� ���?�w�1/2K��1/4W�km��m�=%���0�> x��N�

  2. Maths Internal Assessment -triangular and stellar numbers

    Question 4: Find an expression for the 6-stellar number at S7. As we discovered the connection between the number of layers and the number of dots, an expression for S7 can be calculated. Therefore, the expression for the 6-stellar number at stage S7 is (12 x 21)

  1. Stellar Numbers Portfolio. In this task I will consider geometric shapes, which lead ...

    (where S6 =241 and =7) = 241+16(7-1) = 241+16(6) (multiple of 16) = 241+ 96 = 337 As done with the 6 and 5-stellar numbers, to find the general statement we must look back again to the Triangular number equation of , at this point we need to modify the equation so that it is suitable for the 8-stellar.

  2. Stellar Numbers Portfolio. The simplest example of these is square numbers, but over the ...

    to confirm the trends that had been seen earlier in the investigation. I then looked at these drawings and added up the number of points in each star diagram to have a more organized piece of data to examine closely.

  1. Population trends. The aim of this investigation is to find out more about different ...

    that there is no way that this can be the model, however the graph can still be manipulated to find a similar model. Again the in the equation is relevant because it was the population at the year where the data given starts.

  2. Stellar Numbers. In this study, we analyze geometrical shapes, which lead to special numbers. ...

    can represent this structure as a parallelogram shape, where each side has n dots. Thus, the total number of dots of the two combined identical triangular structures equals to n2 plus the additional number of dots in the extra diagonal n.

  1. Comparing the surface area of different shapes with the same volume

    - "Graph" (www.padowan.dk) or "Grapher" (Apple Applications) - Excel (Microsoft Office) - Paper, pen or pencil - Areas of interaction sheet with instructions and procedures Procedures and methods Even though it is important to have the items mentioned above, it is also very important to follow some easy steps that will conclusively help you achieve the correct answer.

  2. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    + 1 = 21 --> Using n=7: n2 + n + 1 = 36 (7)2 + (7) + 1 = 36 With proof that the formula works it is concluded that the general statement for this pattern is: n2 + n + 1 2.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work