• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Stellar numbers

Extracts from this document...

Introduction

IB 2 Mathematical Portfolio:

Stellar Numbers

Michael Diamond

IB Math SL 2

September 16, 2010

Mr. Hillman

Block G

Page 3

-Introduction

-Triangular Numbers

Page 7

-Stellar Numbers

Page 12

-Other stellar numbers

Page 15

-Conclusion

Introduction:

Certain geometric shapes can yield special types of numbers. The simplest examples of these numbers would square numbers 1, 4, 9, 16, which are the squares of the values 1, 2, 3 and 4 as demonstrated by this table and by the formula . Henceforth, all tables generated are from the Numbers program by the macintosh company and all mathematical notation is from the program Mathtype 6.0. Any graphs displayed will be generated from the graph program “Graph 4.3.”     1 1 3 2 2 4 5 2 3 9 7 4 16

In this investigation the following geometric shapes shall be considered for investigation in order to determine how many dots are in each type of shape from triangular figures to stellar (star) figures. With the ultimate goal being a general encompassing statement in order to determine the number of dots in any star with p-vertices in any n-stage.

Triangular Numbers (Total number of dots in a triangle)

The first shapes that shall be considered are the triangular figures: When the values of the triangles (the number of dots) are input into a table:

 Stage of triangle Image of Triangular shape  Counted number of dots    1 1 1 2 1  2 3 3 3 1  3 6 6 4 1  4 10 10 5 5 15 15

The variables will be defined the same for tables to do with triangluar numbers:

-n will be defined as the stage number of the triangle

- as the nth stage of the triangle The variables will be defined the same for all tables hereafter:

-as the difference between the two terms of the stages and   - as the difference between the two terms of  Middle n will be defined as the stage number of the triangle

F(n) will be defined as the function of the nth triangle

In the above the equation: appears twice once as normally viewed and the other time as the reason is that they are being added together and the reason for them being added together is that to get the equation there must be a visualization, that the triangle is half of another triangle thus forming a square.   hence the resulting number of dots would be half the number of the formed squares dots, which also means that the dots of two triangles is equal to one square.

Then, as there are “n” quantities of “n+1” the equation becomes “n(n+1)”. Then the whole equation is divided by 2 to make the equation representative for the triangle rather than the square.

The final general statement for the triangle will be expressed in terms of n: if the general statement for the nth triangle were multiplied all together then the equation would become the quadratic function: . In order to test for validity the graphing program “Graph 4.3” was used to demonstrate the validity of the general statement. As demonstrated by the graph below, both equations satisfy the general statement for the triangular numbers. Figure 1: Graph of general statement of triangles with data of the 8 stages of the triangle As shown in Figure 1, the R squared value is at 1 as shown on the graph which means that the formula created passes through all the given points perfectly.

Conclusion When comparing 3 functions it is clear that they are quite similar:

## 7-vertices function (p=7)   The only difference seen is that the p- the number of vertices changes.

The graph below illustrates the functions given:

Title: Graph of general statements of 5,6,7 vertices and data on existing 5,6,7 vertices

As seen in the graph, the generated values match the general statement Hence, a general statement  can now be formed, from the patterns viewed above the general statement for all stars with p as vertices and n representing number of stages and representing any stellar number stage with p-vertices:  Conclusion:

Scope and Limitations:

One of the limitations for this equation is for those shapes which do not have the minimum number of vertices required to make a stellar shape. Therefore there is a limit on the number of vertices this limit being , although it is possible to argue that a shape with 2-vertices is a star, the resulting shape does not look like the classical star. However, since the main concern for this investigation is counting the number of dots inside a “stellar” geometric shape, it must be inclusive that they form the shape of a classical star, then the limitation would be as when it is substituted into the equation the result it yields is always 1. The limitations for n on the other hand is that all integers of n must be positive as although negative integers when substituted into the general equation does yield results. To have negative stages of star development would be to discuss the imaginary numbers. Therefore, in the context of having practical applications for the general formula created, ,   Therefore, the general statement: is true when  This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Maths essays

1. ## Extended Essay- Math

i#ï¿½ ï¿½Fï¿½ï¿½ï¿½V ï¿½"ï¿½ï¿½ÅPï¿½ï¿½ï¿½ÈHdL\$ï¿½ï¿½ï¿½ï¿½3ï¿½_ï¿½_ãqï¿½)'ï¿½!1/4ï¿½ï¿½{6~dï¿½?2(c)ï¿½ï¿½ï¿½dï¿½ï¿½3/4ï¿½b1/2(c)ï¿½ï¿½ï¿½Ç1/4_ï¿½ï¿½_ï¿½ï¿½-ï¿½ï¿½Zï¿½ï¿½VAï¿½uÐºh ï¿½ï¿½fEsï¿½2Zmï¿½ï¿½Ck!}ï¿½1/4G\$ ï¿½ï¿½qG~ï¿½ï¿½ï¿½"ï¿½ï¿½dM-`ï¿½wï¿½ï¿½ï¿½.ï¿½ï¿½(c)ï¿½<ï¿½/ uxï¿½}ï¿½ï¿½\$!ï¿½ï¿½È¨ï¿½jPpï¿½ï¿½rï¿½ï¿½-"ï¿½dï¿½ï¿½ï¿½vï¿½ï¿½ï¿½\;1ë·²_~ï¿½"ï¿½ï¿½Ñ¿h!(c)ï¿½ï¿½!ï¿½xï¿½_ï¿½ï¿½qï¿½^!ï¿½"ï¿½_4ï¿½ï¿½;ï¿½ï¿½ï¿½ï¿½"ï¿½[-ï¿½\$ï¿½#-ï¿½xï¿½GÞ³"[email protected]ï¿½Kï¿½ 8wï¿½ ï¿½`ï¿½ [email protected]"ï¿½ ï¿½@.ï¿½ ï¿½ PNï¿½Pï¿½ï¿½ï¿½ nï¿½^p <#ï¿½)ï¿½S`|ï¿½ï¿½;Xï¿½ ' &ï¿½ï¿½D )HRï¿½t!ï¿½rï¿½ï¿½!(ï¿½ï¿½ï¿½1/2ï¿½>(*"* ï¿½Ptï¿½"zï¿½{ï¿½cï¿½9ï¿½ï¿½ï¿½-ï¿½ï¿½0 ï¿½...(tm)a-X-ï¿½ï¿½aï¿½ vï¿½1/2ï¿½ 8Nï¿½sï¿½ï¿½ (r)ï¿½ï¿½ï¿½6ï¿½~?...ï¿½ï¿½Oï¿½ ï¿½(V"Jï¿½ï¿½2Bï¿½By Q1ï¿½tï¿½!T ï¿½uï¿½...ï¿½ï¿½CMï¿½Pkh,ï¿½ Í-Aï¿½ï¿½ï¿½CGï¿½ï¿½Ñï¿½ï¿½ztï¿½=ï¿½~ï¿½^DoaHnï¿½Fcï¿½qï¿½a1ï¿½ï¿½Lï¿½3ï¿½yï¿½(tm)ï¿½|ï¿½bï¿½ï¿½X1ï¿½ï¿½ï¿½ ï¿½ï¿½bc"ï¿½-ï¿½-ï¿½cï¿½4vï¿½ï¿½qï¿½p:ï¿½]8 . -ï¿½+ï¿½5ï¿½nï¿½Fq3ï¿½x"ï¿½ï¿½ï¿½7ï¿½{ï¿½#ï¿½ï¿½|#3/4?ï¿½ï¿½Å¯"Mï¿½.ï¿½?!(tm)p"PKï¿½"<"ï¿½ï¿½iiï¿½hthï¿½hBhï¿½hï¿½h.ï¿½ ï¿½1/4ï¿½ï¿½J\$ï¿½D{"ï¿½ï¿½I,#^" ï¿½ï¿½hÉ´'ï¿½Fï¿½ï¿½ï¿½ï¿½ï¿½ï¿½i{hï¿½ï¿½~%'Hï¿½\$}' )ï¿½[email protected] ï¿½&1/2&ï¿½ cï¿½"ï¿½ï¿½ ï¿½ï¿½ "ï¿½kï¿½ï¿½ï¿½BO ï¿½7 ï¿½Cï¿½B_Bï¿½ï¿½ï¿½ï¿½A"ï¿½ï¿½ï¿½Âï¿½Pï¿½ï¿½ï¿½ï¿½a...'ï¿½Qï¿½qc8ï¿½aï¿½Fï¿½{ï¿½sdY"lBï¿½'ï¿½kÈ·ï¿½ï¿½L(&!&#&?ï¿½}Lï¿½LL3ï¿½Xf1f ï¿½ï¿½|ï¿½fï¿½aï¿½E2ï¿½2ï¿½ KK%ï¿½M-)V"("kï¿½Qï¿½+ï¿½ï¿½?ï¿½xï¿½ ï¿½ï¿½ï¿½ï¿½.ï¿½ï¿½ï¿½ï¿½ï¿½sï¿½ï¿½ ï¿½boaï¿½"ï¿½ï¿½ï¿½"#"ï¿½8G;ï¿½+N4ï¿½\$ï¿½=g"ï¿½)ï¿½ï¿½.f.-.?(r)C\Wï¿½^pï¿½ï¿½'ï¿½ ï¿½(c)ï¿½5ï¿½Cï¿½+<1/4<f<Q<ï¿½<ï¿½yxYyï¿½yCxï¿½y"yï¿½ï¿½tï¿½ï¿½|ï¿½|ï¿½ï¿½>ï¿½ï¿½ï¿½ï¿½-ï¿½ï¿½/ p ï¿½ ï¿½ ï¿½Xtï¿½l|%D#ï¿½.(T,ï¿½'ï¿½(ï¿½'l#1/4Wï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½Hï¿½H(c)ï¿½]'UQ1QWï¿½ï¿½ï¿½sbï¿½bb)bï¿½^ï¿½"ï¿½Ä£ï¿½"ÅH`%ï¿½%B%ï¿½\$F\$aIï¿½`ï¿½Jï¿½GRï¿½"ï¿½Uï¿½Jï¿½4FZC:Bï¿½Zï¿½(tm) ï¿½ï¿½ï¿½Lï¿½ï¿½(tm)ï¿½ï¿½ï¿½ï¿½Ö²Ù²ï¿½_ï¿½"ï¿½<ï¿½ï¿½Ýï¿½'W'"ï¿½ï¿½ï¿½T +X*d+t),+J*ï¿½)V*>Q")(tm)*e(u(-)K)

2. ## The Fibonacci numbers and the golden ratio

-0,61803 -15 1597 -0,61803 -16 -2584 -0,61803 -17 4181 -0,61803 -18 -6765 -0,61803 -19 10946 -0,61803 -20 -17711 -0,61803 -21 28657 -0,61803 -22 -46368 -0,61803 -23 75025 -0,61803 -24 -121393 -0,61803 27 196418 ######## The Fibonacci numbers and the Golden Ratio can also be found in nature.

1. ## Maths Internal Assessment -triangular and stellar numbers

first, and hence, finding its mathematical relation between the first integer and its corresponding 'p' value is necessary to form this general statement. The 'p' value is the number of points on a star or the p-stellar number. Therefore, in this case, the 'p' values are 6 and 7.

2. ## A logistic model

5 4.17?104 20 4.01?104 6 4.13?104 21 4.00?104 7 4.11?104 22 4.00?104 8 4.08?104 23 4.00?104 9 4.07?104 24 4.00?104 10 4.05?104 25 4.00?104 11 4.04?104 26 4.00?104 12 4.03?104 27 4.00?104 13 4.03?104 28 4.00?104 14 4.02?104 29 4.00?104 15 4.02?104 30 4.00?104 46000 Estimated magnitude of population of

1. ## Stellar Numbers. After establishing the general formula for the triangular numbers, stellar (star) shapes ...

This means that the general formula does not just work for a limited number of values for n. After establishing the general formula for the triangular numbers, stellar (star) shapes with p vertices leading to p-stellar numbers were to be considered.

2. ## Stellar Numbers Investigation Portfolio.

multiple of n - 1. Graph 2: 6-Stellar Star Numbers in relation to the unit number In the case when p, the number of points on the star alters a new general statement must be used. This statement involves determining the new arithmetic progression of such series of numbers and then applying it to the new general statement.

1. ## Stellar Numbers Portfolio. The simplest example of these is square numbers, but over the ...

The diagrams that were given with the problem are displayed below. The actual task of Question 3 is to find the number of dots (i.e. the stellar number) in each stage up to S6 and to organize the data so that any patterns can be recognized and described.

2. ## Maths Investigation: Pascals Triangles

row 1 3+3 1 = 0 4th row 1 4+6 4+1 = 0 5th row 1 5+10 10+5 1 = 0 6th row 1 6+15 20+15 6+1 = 0 2.) I notice that they all end in 0. 3.) Alternating sum in row n = 0. • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 