• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17

Stopping distances portfolio. In this task, we may develop individual functions that model the relationship between speed and thinking distance, as well as speed and braking distance. We could also develop a model for the relationship between speed and ov

Extracts from this document...

Introduction

Rami Meziad                       Portfolio Assignment: 2                                        

Section: 11/8                                    Type: II                                                     Date: February 22, 2011

IB Diploma

 Standard Level Mathematics

Portfolio: Type II

Stopping Distances

Rami Meziad section 11/8

American college of Sofia

STOPPING DISTANCES

Introduction

Stopping a moving car requires to apply the brakes which must actually stop the vehicle. There must be a special mathematical relationship between the speed of a car and the thinking distance, braking distance and overall stopping distance. In this task, we may develop individual functions that model the relationship between speed and thinking distance, as well as speed and braking distance. We could also develop a model for the relationship between speed and overall distance. This will be achieved by using Excel Graphing Software to create two data plots: speed versus thinking distance and speed versus braking distance, for which the results will be evaluated and described. Subsequently we can develop a function that will model the relationship and behavior of the graphs based on basic knowledge of functions. After all that we can add the thinking and breaking distance to obtain an overall stopping distance, from which we will once again graph the data and describe it’s results, whilst evaluating the correlation between the graph obtained from these results and the graphs obtained from the comparison between the speed vs.

...read more.

Middle

Speed vs. Braking distance

Speed (km/h)

Braking distance (m)

32

6

48

14

64

24

80

38

96

55

112

75

Excel models

image05.png

For speed vs. braking distance, the formula for a linear equation through (48,14) and (96,55) is found by:



image06.png

image07.png


The equation is found by
y - y1 = m(x - x1)

y – 14 = image08.pngimage08.png (x – 48)
y - 14 =
image08.pngimage08.pngx - 41
y =
image08.pngimage08.pngx - 27 (x = braking distance & y = speed)

y = 0.8541x – 27

Speed [km/h]

Braking distance [m]

y = 0.8541x – 27

32

6

0.3312

48

14

13.9968

64

24

27.6624

80

38

41.328

96

55

54.9936

112

75

68.6592

image10.png

Quadratic Relationship

From chart two it is clear that the points represent a curve which is suitable for quadratic or cubic equation. For the quadratic equation of the type: y = ax2 + bx + c, the graphic software calculates the relationship in the following way: y = 0.0061x2 – 0.0232x + 0.6

Speed [km/h]

Braking distance [m]

Quadratic relation

32

6

6.104

48

14

13.5408

64

24

24.1008

80

38

37.784

96

55

54.5904

112

75

74.52

image11.png

Cubic Relationship

y = ax3 + bx2 + cx + d

The software calculates for the quadratic relationship:

a = 1.1118image12.pngimage12.png – 6; b = 0.0059; c = 1.4724image12.pngimage12.png – 4; d =3.0093image12.pngimage12.png – 6

Description

In the graphs above, the plotted points are in a curve. This is possible in two cases: if there is a quadratic relationship or a cubic relationship. As it’s seen from the equation for the quadratic and cubic relationships, they both fit the data properly. However, the cubic function is only suitable for this data,

...read more.

Conclusion


Clearly, the quadratic equation is a better predictor of the total stopping distances.

How does it fit the model and what modifications can be made?

The additional points have been plotted in bold in collaboration with the stopping distance data created from the initial data. As we can see on the graph, the additional information is fairly accurate, and fits the model perfectly. There are no major modifications needed, as the data seems to fit on to the line rather perfectly. One minor addition rather that modification that could be made is to try the vehicle’s highest speed to see whether or not this model is valid through all the speed of the vehicle.

image18.png

Conclusion

 In conclusion, it is clear that there is a linear relationship between the speed and thinking distance, whilst there is a quadratic relationship between the speed and breaking and the stopping distances. This seem to be an obvious outcome because it makes sense that when the car is at a low speed, the break will be pushed down in a controlled manner, hence making the distance increase quicker than the time, where as, if the vehicle is going at a much quicker speed, the driver will tend to push down on the brake more abruptly and will stop over a smaller distance but quicker.

Page  of

        

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    Y: 3.7 +10.0 = 13.7 because it's left over amount of drug from previous dose plus 10 (new dose) for a total of 13.7 micrograms. New equation: 13.7= z e^(-.1863*6) Step 3: solve for z a.) -.1863*6=-1.1178; b.)e^-1.1178=.3260; c.)13.7/ .3260=41.896=z Step 4: graph the old equation replacing the 10.391 with z (41.896)

  2. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    This would be represented by Therefore the probability of Adam winning the deuce would be: The infinite geometric series goes on because Adam would have to win 2 points in a row and the deuce, in theory could go on forever, therefore the sum of the infinite geometric series must be found.

  1. LACSAP's Functions

    - 2(6 - 2) = 13 3 21 ( (6+1)C2) - 3(6 - 3) = 12 4 21 ( (6+1)C2) - 4(6 - 4) = 13 5 21 ( (6+1)C2) - 5(6 - 5) = 16 1, 21/16, 21/13, 21/12, 21/13, 21/16, 1 The seventh row would be: Element Number Numerator Denominator 0 28 ( (7+1)C2)

  2. A logistic model

    ?2 ? 10?5 u ? 2.2 {4} n n Using equations {1} and {2}, one can find the equation for un+1: un?1 ? run r ? ?2 ? 10?5 u ? 2.2 n n ? un?1 ? (?2 ?10?5 u n ? 2.2)un ? (?2 ?10?5 )(u )(u ) ?

  1. Stopping Distances

    vehicle so: c= 0 the final function we get from using the equation is: y=1.875*10 ^-4x+0 Since there cannot be any negative thinking distances or speed, the equation for the linear of speed versus thinking distance has to be: y=|1.875*10 ^-4x+0| Speed versus Braking distance From the values of the

  2. Finding Functions to Model Population trends in China

    has the closest best-fit compare to other models being produced by other equations; it has managed to fit into most of the points. However, if it were the model of this graph, it would mean that the population of China is infinitive and grows at a constant rate, which shouldn't

  1. Stellar Numbers. In this task geometric shapes which lead to special numbers ...

    This arouses the question: what are vertices? A vertex should be considered "the common endpoint of two or more rays or line segments (...) Vertex typically means a corner or a point where lines meet." 3 If we took this and followed it exactly then polygon 2 would have 12 vertices, instead of 6, polygon 3 would

  2. portfolio Braking distance of cars

    Speed (km/h) Thinking distance (m) 32 6 48 9 64 12 80 15 96 18 112 21 x = speed y = thinking distance y = ax + b 6 = 32a + 0 32a = 6 a = y = x + b The value of b should be

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work