• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Systems of Linear Equations. Investigate Systems of linear equations where the system constants have well known mathematical patterns.

Extracts from this document...

Introduction

Mathematical Investigation

Investigate Systems of linear equations where the system constants have well known mathematical patterns.

Part A:image00.pngimage01.png

Here is a 2x2 system of linear equations:            

It is easy to notice that if one starts from the coefficient of x, they can generate the coefficient of y by adding 1 to it and the constant by adding 1 to the coefficient of y. Another way to look at this is to start from the constant and add -1 to it you can generate the y coefficient and add -1 to this to get the x coefficient. The same is true for the second equation except that instead of adding 1 to the coefficient of x, we add -3. Similarly, we can start from the constant and add 3 each time to get the y and x coefficients.

image08.pngimage27.pngimage27.pngimage11.pngimage20.png

       x + 2y= 3           x= -2y + 3                                                                      x= -2(2) + 3        x= -1image06.pngimage06.png

       2x – y= -4         2(-2y + 3) – y= -4        -4y + 6 – y= -4       -5y= -10          y= 2                    y= 2

The solution x equals -1 and y equals 2 means that that point satisfies both equations. As we can see in the graph the two equations intersect at a point and that point is the same as the solution we found when we solved the problem algebraically. So the point that the two equations intersect is (-1, 2).

         Graphimage36.png

Here are some examples using the same pattern:

Example 1:

...read more.

Middle

image25.png

image23.pngimage23.pngimage23.png

c(a+ b) – cay – cby + cay + day= a(c + 2d)     ca + 2cb – cby + day= ca + 2ad     2cb – cby + day= 2ad     image30.pngimage29.pngimage26.pngimage28.png

image33.pngimage32.pngimage31.png

                                                   ax= a + 2b – (a + b)(2)      ax= a + 2b – 2a – 2bimage23.pngimage26.pngimage26.png

day – cby= 2ad – 2cb      y(ad – bc)= 2(ad – bc)        y= 2                          y=2          image34.png

      a(1 – 2)         x= -1

           a            

y=2                      y= 2

We can see that even in the most general form the answers are the same.

Originally I guessed that the 3x3 system of equations would work the same way as the 2x2 system. I would have thought that all the 3x3 systems would have a common solution. Unlike the 2x2 system of equations for which I used the method of substitution to solve, I used matrix algebra to solve the 3x3 system.

Let’s consider a 3x3 system of linear equations:

               x + 2y + 3z= 4                                         1   2   3         x              4

2x – y – 4z= -7                                           2  -1  -4        y       =      -7         or   AX=B

3x + 5y + 7z= 10                                       3   5   7         z               10

              By multiplying both sides by A-1 , the inverse matrix of A, we get the solution. In other words,

A-1 AX= A-1BIX=A-1 B           X= A-1B   (where I is the 3x3 identity matrix)

All we have to do is find the inverse matrix of A, which I did using a graphing calculator, as shown in picture 1. To my surprise I found that the inverse did not exist.

...read more.

Conclusion

0px;" alt="image38.png" />image38.png         y= bx - image38.pngimage38.png

As the value of a goes from - ∞       zero the slope increases from zero        + ∞, while the y-intercept is always negative and it decreases in absolute value. The x-intercept is equal to a2 and decreases as the value of a decreases. When a becomes positive, the slopes of the lines are negative. Actually the slopes increase from - ∞         zero as the a goes from zero       + ∞.  

We observe a similar pattern in the other family of equations. We notice that we get the same line for a= - image39.pngimage39.png as for b = 2; for a = - image40.pngimage40.png  as for b = 5; etc. IN other words we get the exact line whenever b = - image41.pngimage41.png .

The y-intercept of the family of curves goes from - ∞           + while the x-intercept is always positive.

The solution of the 2x2 general system of equations is:

x + ay= a²        y= - image42.pngimage42.png + a

bx – y= image38.pngimage38.png         y= bx - image38.pngimage38.png

-image44.pngimage44.pngx + a = bx - image45.pngimage45.png          (b + image44.pngimage44.png)x = a + image45.pngimage45.png          x=  image47.pngimage47.pngx = image48.pngimage48.png

y= bx - image38.pngimage38.png        y = b (image49.pngimage49.png) - image50.pngimage50.png               y= a - image50.pngimage50.pngy= image52.pngimage52.png

Both equations are the same, when b = - image41.pngimage41.png . This implies that a = -  image38.pngimage38.png.

        Therefore, the first equation, y= - image42.pngimage42.png + a, becomes y = bx –  image38.pngimage38.png.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Parabola investigation. In this task, we will investigate the patterns in the intersections of ...

    -4 -4 1 -2 12 -10 0.5 2 -10 5 0.5 Proof: Find the two intersections between parabola f(x) and g(x): or Find the two intersections between parabola f(x) and h(x): or Hence, the conjecture about the values of D, for all real values of a, .

  2. In this task, we are required to investigate the mathematical patterns within systems of ...

    Therefore, my conjecture is: for any 2�2 system of linear equations which have the constants in the order of arithmetic sequences. They must have a unique solution of x = -1, y = 2. And I came out with these general equations: Substituting into equation (1): This system has a unique solution of x = -1, y = 2.

  1. Investigating Slopes Assessment

    In a few words, I can say that for the function f(x)= Xn, f1(x) will equal to f1(x)= nXn-1. Part 2 Then, still for the same investigation, the paper tells me to consider a function of the form f(x)=aXn. Again I will try to find a correlation by using a variety of examples.

  2. Math IA patterns within systems of linear equations

    graph all equations, we see that all lines intersect at the point (-1;2) We can make the conjecture, that all 2 x 2 systems of linear equations where the coefficients follow an AS have the same solution of x=-1 and y=2.

  1. In this investigation, I will be modeling the revenue (income) that a firm can ...

    if we restrict and end the lines at the x-axis then this can be a suitable model for real-life situations. Part 3: In this next part of the investigation, using our revenue functions from part 2, we will determine the price that the VBGC will need to charge each quarter in order to maximize their revenue.

  2. Develop a mathematical model for the placement of line guides on Fishing Rods.

    Guide Number (from tip) 0* 1 2 3 4 5 6 7 8 n** Distance from Tip (cm) 0 10 23 38 55 74 96 120 149 230 *the guide at the tip of the rod is not counted **n is the finite value that represents the maximum number of guides that would fit on the rod.

  1. This assignment aims to develop a mathematical model for the placement of lines on ...

    (insert graph with model function and original data points) The graph goes through the first 5 data points and gets close to the last 3 data points only. Answer 2 Choose 3 data points from the given table above. To make sure the function would pass through the first and

  2. The purpose of this investigation is to explore the various properties and concepts of ...

    purely to just fill all the matrices completely. Now the message matrices are all cipher shifted using an algorithm and all code matrices undergo the same cipher shift. A 4x4 scramble matrix with a determinant of 1 is then to be created by using properties of ?upper triangular matrices? and ?transpose matrices?.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work