• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Systems of Linear Equations. Investigate Systems of linear equations where the system constants have well known mathematical patterns.

Extracts from this document...


Mathematical Investigation

Investigate Systems of linear equations where the system constants have well known mathematical patterns.

Part A:image00.pngimage01.png

Here is a 2x2 system of linear equations:            

It is easy to notice that if one starts from the coefficient of x, they can generate the coefficient of y by adding 1 to it and the constant by adding 1 to the coefficient of y. Another way to look at this is to start from the constant and add -1 to it you can generate the y coefficient and add -1 to this to get the x coefficient. The same is true for the second equation except that instead of adding 1 to the coefficient of x, we add -3. Similarly, we can start from the constant and add 3 each time to get the y and x coefficients.


       x + 2y= 3           x= -2y + 3                                                                      x= -2(2) + 3        x= -1image06.pngimage06.png

       2x – y= -4         2(-2y + 3) – y= -4        -4y + 6 – y= -4       -5y= -10          y= 2                    y= 2

The solution x equals -1 and y equals 2 means that that point satisfies both equations. As we can see in the graph the two equations intersect at a point and that point is the same as the solution we found when we solved the problem algebraically. So the point that the two equations intersect is (-1, 2).


Here are some examples using the same pattern:

Example 1:

...read more.




c(a+ b) – cay – cby + cay + day= a(c + 2d)     ca + 2cb – cby + day= ca + 2ad     2cb – cby + day= 2ad     image30.pngimage29.pngimage26.pngimage28.png


                                                   ax= a + 2b – (a + b)(2)      ax= a + 2b – 2a – 2bimage23.pngimage26.pngimage26.png

day – cby= 2ad – 2cb      y(ad – bc)= 2(ad – bc)        y= 2                          y=2          image34.png

      a(1 – 2)         x= -1


y=2                      y= 2

We can see that even in the most general form the answers are the same.

Originally I guessed that the 3x3 system of equations would work the same way as the 2x2 system. I would have thought that all the 3x3 systems would have a common solution. Unlike the 2x2 system of equations for which I used the method of substitution to solve, I used matrix algebra to solve the 3x3 system.

Let’s consider a 3x3 system of linear equations:

               x + 2y + 3z= 4                                         1   2   3         x              4

2x – y – 4z= -7                                           2  -1  -4        y       =      -7         or   AX=B

3x + 5y + 7z= 10                                       3   5   7         z               10

              By multiplying both sides by A-1 , the inverse matrix of A, we get the solution. In other words,

A-1 AX= A-1BIX=A-1 B           X= A-1B   (where I is the 3x3 identity matrix)

All we have to do is find the inverse matrix of A, which I did using a graphing calculator, as shown in picture 1. To my surprise I found that the inverse did not exist.

...read more.


0px;" alt="image38.png" />image38.png         y= bx - image38.pngimage38.png

As the value of a goes from - ∞       zero the slope increases from zero        + ∞, while the y-intercept is always negative and it decreases in absolute value. The x-intercept is equal to a2 and decreases as the value of a decreases. When a becomes positive, the slopes of the lines are negative. Actually the slopes increase from - ∞         zero as the a goes from zero       + ∞.  

We observe a similar pattern in the other family of equations. We notice that we get the same line for a= - image39.pngimage39.png as for b = 2; for a = - image40.pngimage40.png  as for b = 5; etc. IN other words we get the exact line whenever b = - image41.pngimage41.png .

The y-intercept of the family of curves goes from - ∞           + while the x-intercept is always positive.

The solution of the 2x2 general system of equations is:

x + ay= a²        y= - image42.pngimage42.png + a

bx – y= image38.pngimage38.png         y= bx - image38.pngimage38.png

-image44.pngimage44.pngx + a = bx - image45.pngimage45.png          (b + image44.pngimage44.png)x = a + image45.pngimage45.png          x=  image47.pngimage47.pngx = image48.pngimage48.png

y= bx - image38.pngimage38.png        y = b (image49.pngimage49.png) - image50.pngimage50.png               y= a - image50.pngimage50.pngy= image52.pngimage52.png

Both equations are the same, when b = - image41.pngimage41.png . This implies that a = -  image38.pngimage38.png.

        Therefore, the first equation, y= - image42.pngimage42.png + a, becomes y = bx –  image38.pngimage38.png.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    Example 2 Function seen in the graph: [In blue] [In black] [In pink] Graphs in the first quadrant have been analyzed before and I will state my observations. * For graphs in the first quadrant. Placement of the vertex does not affect the conjecture as long as the given parabola

  2. Mathematics (EE): Alhazen's Problem

    This will give the point along the circumference must one ball must be aimed at in order for it to strike the other after rebounding off the edge. Another method introduced by Michael Drexler and Martin J. Gander in their essay "Circular Billiards" involves using a different geometric derivation10.

  1. Parabola investigation. In this task, we will investigate the patterns in the intersections of ...

    = (3; 3) * Substitute into (4): (x, y) = (1.5; 1.5) Hence, the x-values from left to right are: > x1� 1.177 > x2= 1.500 > x3= 3.000 > x4� 3.823 Calculation of SL and SR: SL = x2-x1� 1.500-1.177� 0.323 SR = x4-x3� 3.823-3.000� 0.823 Calculate. Thirdly, consider parabola, the lines and.

  2. In this task, we are required to investigate the mathematical patterns within systems of ...

    Therefore, my conjecture is: for any 2�2 system of linear equations which have the constants in the order of arithmetic sequences. They must have a unique solution of x = -1, y = 2. And I came out with these general equations: Substituting into equation (1): This system has a unique solution of x = -1, y = 2.

  1. The purpose of this investigation is to explore the various properties and concepts of ...

    773361693277558354329011560267360333632019369646564774044753 This is the final scrambled code. This code is virtually unbreakable, unless the decoder is provided with the inverse of the scramble matrix, the cypher shift and the alphanumeric system or using a very powerful computer program. It is assumed the security is sufficient for our purposes, no further

  2. Math IA patterns within systems of linear equations

    graph all equations, we see that all lines intersect at the point (-1;2) We can make the conjecture, that all 2 x 2 systems of linear equations where the coefficients follow an AS have the same solution of x=-1 and y=2.

  1. Investigating Slopes Assessment

    because I have already analysed the answer of it in the first investigation. So, I will start by giving to ?n? the value of 3. 1st Case I will try, firstly, with ?3? for the number that will equal to n.

  2. This assignment aims to develop a mathematical model for the placement of lines on ...

    Comment on any differences. Quadratic function form: y=ax²+bx+c We need to find a, b and c using matrix methods in order to find the quadratic function. Since there are 3 variables, we can create a 3 by 3 (3 x 3) matrix and a 3 by 1 (3 x 1)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work