• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22

The purpose of this paper is to investigate an infinite summation patter where Ln(a) is a constant and the coefficient of x is an increasing factor to Ln(a).

Extracts from this document...

Introduction

Infinite Summation

Math IA

        The purpose of this paper is to investigate an infinite summation patter where Ln(a) is a constant and the coefficient of x is an increasing factor to Ln(a).

Consider the following sequence of terms where x=1 and a=2 under the terms that 0≤n≤10:

tn=image00.png

n

t(n)

S(n)

0.000000

1

1

1.000000

0.69314718

1.693147

2.000000

0.24022651

1.933373

3.000000

0.05550411

1.988877

4.000000

0.00961813

1.998495

5.000000

0.00133336

1.999829

6.000000

0.00015404

1.999983

7.000000

1.5253E-05

1.999998

8.000000

1.3215E-06

1.999999

9.000000

1.0178E-07

1.999999

10.000000

7.0549E-09

2

image01.png

        As n  +, Sn  +2

Consider the following sequence of terms where x=1 and a=3:

tn=image12.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

1.098612

2.098612

2.000000

0.603474

2.702087

3.000000

0.220995

2.923082

4.000000

0.060697

2.983779

5.000000

0.013336

2.997115

6.000000

0.002442

2.999557

7.000000

0.000383

2.999940

8.000000

0.000053

2.999993

9.000000

0.000006

2.999999

10.000000

0.000001

3.000000

image23.png

As n → +∞, Sn → +3

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive three. Sn approaches a horizontal asymptote when y=3. There is a y-intercept at (0,1).

image32.png

As n → +∞, Sn → +4

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive four. Sn approaches a horizontal asymptote when y=4.

...read more.

Middle

5.666868

3.000000

0.277521

5.944389

4.000000

0.048091

5.992480

5.000000

0.006667

5.999146

6.000000

0.000770

5.999917

7.000000

0.000076

5.999993

8.000000

0.000007

5.999999

9.000000

0.000001

6.000000

image05.png

As n → +∞, Sn → +6

Let a=2 and calculate various positive values for x:

x

t(n)

S(n)

0.0

1.000000

1.000000

1.0

0.693147

1.693147

2.0

0.480453

2.173600

3.0

0.166512

2.340113

4.0

0.038473

2.378585

5.0

0.006667

2.385252

        In the graph, when x is approaching infinite the Sn values are increasing steadily. When various values are used for x then there is an exponential growth.

Let a=3 then calculate for various positive values of x:

x

t(n)

S(n)

0.0

1.000000

1.000000

1.0

1.098612

2.098612

2.0

1.206949

3.305561

3.0

0.662984

3.968546

4.0

0.242788

4.211333

5.0

0.066682

4.278016

image06.png

In the graph, when x is approaching infinite the Sn values are increasing steadily. When various values are used for x then there is an exponential growth.

Evidence:

tn=image07.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

2.772589

3.772589

2.000000

0.960906

4.733495

3.000000

0.222016

4.955511

4.000000

0.038473

4.993984

5.000000

0.005333

4.999317

6.000000

0.000616

4.999933

7.000000

0.000061

4.999994

8.000000

0.000005

5.000000

9.000000

0.000000

5.000000

image08.png

As n → +∞, Sn → +6

Sn approaches a horizontal asymptote when y=6. There is a y-intercept at (0,1).

tn = image09.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

4.158883

5.158883

2.000000

1.441359

6.600242

3.000000

0.333025

6.933267

4.000000

0.057709

6.990976

5.000000

0.008000

6.998976

6.000000

0.000924

6.999900

7.000000

0.000092

6.999991

8.000000

0.000008

6.999999

9.000000

0.000001

7.000000

image10.png

As n → +∞, Sn → +7

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive seven. Sn approaches a horizontal asymptote when y=7. There is a y-intercept at (0,1).

tn = image11.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

4.852030

5.852030

2.000000

1.681586

7.533616

3.000000

0.388529

7.922145

4.000000

0.067327

7.989471

5.000000

0.009333

7.998805

6.000000

0.001078

7.999883

7.000000

0.000107

7.999990

8.000000

0.000009

7.999999

9.000000

0.000001

8.000000

image13.png

As n → +∞, Sn → +8

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive eight. Sn approaches a horizontal asymptote when y=8. There is a y-intercept at (0,1).

tn = image14.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

5.545177

6.545177

2.000000

1.921812

8.466990

3.000000

0.444033

8.911022

4.000000

0.076945

8.987967

5.000000

0.010667

8.998634

6.000000

0.001232

8.999867

7.000000

0.000122

8.999989

8.000000

0.000011

8.999999

9.000000

0.000001

9.000000

image15.png

As n → +∞, Sn → + 9

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive nine. Sn approaches a horizontal asymptote when y=9. There is a y-intercept at (0,1).

tn = image16.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

6.238325

7.238325

2.000000

2.162039

9.400363

3.000000

0.499537

9.899900

4.000000

0.086563

9.986463

5.000000

0.012000

9.998464

6.000000

0.001386

9.999850

7.000000

0.000137

9.999987

8.000000

0.000012

9.999999

9.000000

0.000001

10.000000

10.000000

0.000000

10.000000

...read more.

Conclusion

tn = image19.png

n

t(n)

S(n)

0.000000

1.000000

1.000000

1.000000

5.493061

6.493061

2.000000

3.017372

9.510434

3.000000

1.104974

10.615408

4.000000

0.303485

10.918893

5.000000

0.066682

10.985575

6.000000

0.012210

10.997785

7.000000

0.001916

10.999701

8.000000

0.000263

10.999964

9.000000

0.000032

10.999996

image20.png

As n → +∞, Sn → + 11

There is a horizontal asymptote as n approaches positive infinite (∞).

image21.png

tn= image22.png

n

t(n)

S(n)

0.0

1.000000

1.000000

1.0

7.690286

8.690286

2.0

4.224321

12.914607

3.0

1.546964

14.461571

4.0

0.424878

14.886450

5.0

0.093355

14.979805

6.0

0.017094

14.996898

7.0

0.002683

14.999581

8.0

0.000368

14.999950

9.0

0.000045

14.999995

image24.png

As n → +∞, Sn → + 15

There is a horizontal asymptote as n approaches positive infinite (∞). As n approaches positive infinite then Sn will approach positive fifteen. Sn approaches a horizontal asymptote when y=15. There is a y-intercept at (0,1).    

tn= image25.png

n

t(n)

S(n)

0.0

1.000000

1.000000

1.0

8.788898

9.788898

2.0

4.827796

14.616694

3.0

1.767959

16.384653

4.0

0.485575

16.870228

5.0

0.106692

16.976920

6.0

0.019535

16.996455

7.0

0.003066

16.999521

8.0

0.000421

16.999942

9.0

0.000051

16.999994

image26.png

As n → +∞, Sn → + 17

There is a horizontal asymptote as n approaches positive infinite (∞). Sn approaches a horizontal asymptote when y=17. There is a y-intercept at (0,1).    

Checks with various numbers:

tn =image27.png

n

t(n)

S(n)

0.0

1.000000

1.000000

1.0

48.283137

49.283137

2.0

38.854356

88.137493

3.0

20.844558

108.982051

4.0

8.387005

117.369057

5.0

2.699673

120.068729

6.0

0.724159

120.792889

7.0

0.166498

120.959387

8.0

0.033496

120.992883

9.0

0.005990

120.998873

10.000000

0.000964

120.999837

image28.png

tn = image29.png

n

t(n)

S(n)

0.0

1.000000

1.000000

1.0

13.961881

14.961881

2.0

32.489020

47.450901

3.0

50.400871

97.851772

4.0

58.640914

156.492686

5.0

54.582497

211.075184

6.0

42.337463

253.412647

7.0

28.148125

281.560772

8.0

16.375032

297.935804

9.0

8.467639

306.403443

10.000000

3.940806

310.344249

n

t(n)

S(n)

0.0

1.000000

1.000000

1.0

179.175947

180.175947

2.0

160.520100

340.696047

3.0

95.871136

436.567183

4.0

42.944504

479.511687

5.0

15.389244

494.900931

6.0

4.595637

499.496569

7.0

1.176325

500.672894

8.0

0.263461

500.936356

9.0

0.052451

500.988807

10.000000

0.009398

500.998205

image30.png

tn = image31.png

Conclusion:

The limitation to this general statement is that the scope of the evidence is limited to only a few combinations of x and a .  

The continuous observation of various graphs with different values used in place of a and x provide evidence for the general statement.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ��[��������}����Ë� $��FY�"8o�T�>�-�y�"o���]G����>�?���...'У,��7�*�S?�-�<��7��(r)��f�?�g�r�����?�Q-� �� �)�"�K~-���WQ��q����9c?�pad��(�?� �Ê����%�?��+��Y����������?��O�e��C���A� c� �ß��F�{�����G�C�� X�\�Y'� 2�!�� �...1�o��#|=���?�n#���q��,g�.�,"�...g��PÂ�A�D*��3/4-��u�7��8��-3�- �I�B���p���e?��^����z-���-Q���...����'L1/4I(c)�$i���m���M�Xk����/��s] (����1�9��t�T"\�w��uwg(c)�+�p�l._���I�U�...�J��3/4(�����^�(c)�W���:�����l?�7�-������ ��� � ( � ( � ( � ( � ( � ( � ( � ( � kH�È�!a��Tn`�NX��Íp9<P�(r)�ÑÕU"�V-�� �ph���A9-A �=A�@ @h�{��1/2�� -,������Mr�?�.�?�� "�"a����1/4�5��}�P � @P@P@P@P@P@P@P@P@P Â����;��3/4���[�F��_�V�C� ;A�|a��d�"|U�1/2�1j�7�l��W�^��� #�I�2Ö³C��_ �O���<#�l3/4*�"��~�S^}��- �4 V�_�*|x����kj:֣�h~�C"� H'���Q�-�0k�X~��m��O�z�� h>1��}3E���Ŧi��'��$��CgB�:ñ|_�4�n���i(c)...�P "�/����9h|e x"��?| '�O�-"�> � ��h���5�^��(r)��Z�I'�uA4V(r)��e""W��+"p5���+�csw��NYVS���ln2U���&�ZxjPJN��W'%c��<A��...�dX�>�U��c�AV������'p�j'n<�Ò"����J�x��3/44����-��...j����U�K��o�h6���"<��m�(r).-��Gko-��h"-~��� ,��' �*�0YM wdY...L&�h�X�U\|�+E^s�P�(c);�q"\�wo�1/4-�cqY>p���F:(r)�3,+�jJ�GJ�,*�1/4��ܥ�F.R�J�%� �/��i/ڣ������_?f�ٶ��ZG� _C�-��|B���;�Z <]%����Z.��7)�\���[e�Ap�} �'�pgp�S�|Q�|eW0�e8|N(tm)ar��/(c)

  2. Math Studies I.A

    $13,400 (2007 est.) $12,500 (2006 est.) note: data are in 2008 US dollars Armenia $6,400 (2008 est.) $5,900 (2007 est.) $5,200 (2006 est.) note: data are in 2008 US dollars Aruba $21,800 (2004 est.) Australia $38,100 (2008 est.) $37,700 (2007 est.) $36,800 (2006 est.) note: data are in 2008 US dollars Austria $39,200 (2008 est.)

  1. Math IA - Logan's Logo

    To calculate the value of d here, we make use of the following equation: , Which will work because if you add the highest and lowest y-value points of the curve together, then divide by 2, the result would give you an estimate of the position of the x-axis - if it was merely a graph of .

  2. Math Studies - IA

    1.95 = -.95769 .9171701361 C .99329 - 1.95 = -.95671 .9152940241 Hence, All there is left is a little plug&chug: The Spearman's rank order of correlation coefficient value of t.946007729 clearly indicates that there is a very strong positive correlation between the results of the majors and the results of

  1. SL Type 1 PF - Infinite Summation - A general statement has been reached, ...

    For , the value of approaches 2, approaches 4, 8, and so on. This draws a hint about the general pattern of the sum of an infinite sequence when the value is fixed. In order to visualize the values for an analysis of a pattern, Figure 4 plots the values on a graph.

  2. Mathematics IA - Particles

    4 = 0.25). Finally I subtract by 50,000 to illustrate the removal of particles by the immune system. This leaves me with the new number of particles at current time. I put this formula into Microsoft Excel to show me when the particle count reaches 1012.

  1. Infinite summation portfolio. A series is a sum of terms of a sequence. A ...

    Starting with : Now we calculate S10 for : We will also draw the graphs for each different value of a that we chose, so we can check if there is some pattern (using Excel 2010): We notice that when , the asymptote of Sn (which is also approximately the value of S10)

  2. MATH IA- Filling up the petrol tank ARWA and BAO

    is directly proportional to p1. Seeing the effect of changing p2 on the money saved by Bao (with respect to Arwa), when p1 and d are kept constant at 1.00$ and 10km respectively p1 (US$)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work