• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Sky Is the Limit Portfolio. In this assignment I will be building a model for the relationship between the winning heights in mens high jump and the years that they took place.

Extracts from this document...


The Sky is the Limit

In this assignment I will be building a model for the relationship between the winning heights in men’s high jump and the years that they took place.

The high jump event in the Olympics is a track and field athletics event.  It is held every four years in the summer Olympics.  In the event competitors must jump over a horizontal bar that is placed at various heights.  The high jump has existed for centuries now and was popular in ancient Greece.  Javier Sotomayor holds the current world record for men’s high jump with a jump of 245 centimetres.    

The table below gives the height (in centimetres) achieved by the gold medalists at various Olympic Games.  Note: the Olympics were not held in 1940 and 1944 due to World War II.


The independent variable is time; so let t years be the time.  The dependant variable is height; so let h centimeters be the height.  It is important to note that height cannot be negative as it is physically impossible to have a jump that is below 0 centimetres.

A constraint of plotting this data is that there are two missing points for the years 1940 and 1944, as there were no Olympics during these years.

...read more.


image07.png was the most suitable.






From looking at the graph above it seems as though a better fit for this function would be if the first point started at (1948, 198).  This is partly because the Olympics were not held during World War II, which creates a gap in data.  This war also meant that the athletes were unable to train so this is a reasonable assumption of why the two points after the war are almost identical to the points before the war.  For this reasoning it would be acceptable to start the function at the point (1948, 198).  To find the new equation for this function I used trial and error once again and found that the most suitable equation was: image13.png



The model above fits the points better, however it ignores the first two data points.  In both of the square root models created there will be outlier points, but in the second one there are less for the data given.  For the predicted reason stated earlier, both of the square root functions that I created are acceptable to use.  Also, the second model for the square root function is likely to be more accurate in predicting the winning heights for the future because it fits the data very well.

...read more.


My models created were effective for visualizing the data and also to predict winning heights for the future.  When creating models like the functions in this assignment it is important to think logically and realistically.  For example, simple things in this assignment were to realize that the height cannot be negative or that there will always be some outlier points because the winning heights will not increase consistently.  The logical portion of creating models is perhaps even more important.  If both of these aspects are thought about carefully than effective models will be created.  

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math Portfolio Type II Gold Medal heights

    If one takes a rough estimate at the highest point of the graph one would get a result such of (250, 353). Which would imply a height of 3.50 meters in 2146. At first sight this might not seem to be an unachievable value, however the height of one storey of an average house is about 3.00 meters.

  2. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    with maximum volume under the curve, we find the area of the face of the cuboid: Let {sub in value} Differentiate to find maximum area at , {these values are the roots} Find the second derivative to prove that this is a maximum curve: ?

  1. High Jump Gold Medal 2012 maths investigation.

    24 193 32 194 36 197 40 203 52 198 56 204 60 212 64 216 68 218 72 224 76 223 80 225 84 236 88 235 92 238 96 234 100 239 104 235 108 236 112 236 The graph below represents the data from 1896 to 2008

  2. A logistic model

    One can write two ordered pairs (1?104 , 2.3) , (6 ?104 , 1) . The graph of the two ordered pairs is: 5 IB Mathematics HL Type II Portfolio: Creating a logistic model International School of Helsingborg - Christian Jorgensen Plot of population U n versus the growth factor r 2,5 2,4 2,3 2,2 2,1 2 1,9 1,8

  1. IB Mathematics Portfolio - Modeling the amount of a drug in the bloodstream

    in a graphing calculator. Y= 41.896e^-.1863x Step 5: find the new values Use the table to find the new values up till the next dose at the 12 hour and repeat the same procedure here. Interpretation The reasonableness of Model B is logical, for all my assumptions are true according to Model B.

  2. Math Portfolio: trigonometry investigation (circle trig)

    values of maxima, minima, amplitude, period and frequency are the same as the graph. The graph is reflected across the y axis from the graph so it is coincident with the graph; therefore, the values of maxima, minima, amplitude, period and frequency are the same as the graph.

  1. Modelling Probabilities in Games of Tennis

    Different ways in which a game might be played. The first thing we must do if we want to know all the different ways a game can be played is find the domain of Y, the number of points played. Because a player must score at least 4 points and maintain a difference of at least 2 points to

  2. Population trends. The aim of this investigation is to find out more about different ...

    The amount of times the is multiplied changes the frequency and therefore a smaller frequency is needed. Currently it doesn't look very much alike the data. The amplitude of the curve is too big and should become much smaller,

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work