• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Two Yachts Problem

Extracts from this document...

Introduction

The Two Yachts Problem

Pg. 405                                                        IB Math SL Y2

Yacht A has initial position (-10, 4) and has velocity vectorimage00.png.

Yacht B has initial position (3, -13) and has velocity vectorimage01.png.

1. Explain why the position of each yacht at time t is given by

           rA = image03.png

...read more.

Middle

. (image18.png refers to an initial position and image02.png refers to a direction vector.)

- Therefore, a vector equation for Yacht A can be written as image03.png+ timage00.png.

- A vector equation for Yacht B can be written as image04.png+ timage01.png.

3.

...read more.

Conclusion

So, 50t - 214 = 0. Thus t = image11.png= 4.28.

6. The time when d is to be a minimum is the same time as when d2 is a minimum, so the closest approach occurs at t = 4.28. So, if I put t = 4.28 into the expression for d is:

d =image10.png

  = image12.png

= image13.png

  = image14.png

  =  0.2 miles

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    m-��2��� ��&T'$�IMJæd2g���i��:�0�/:|����xeo�\ib�l...G�X��(c)og�jq� �}�wkh1/2���<Þ¢q���Õk����;;�"o߬1/4E�"��k��"g�'��<X}6�~����1�'�Æ��{(r)��p��+��o^1/2�y->=2#�!i��1/4��"O= [_��\t_r_����Mh���{�j���kY?�?Ϭ֣×on"o�m�m��|�%�E�j�Z�V�N�3/43/4c��@%Å�@��������� �<3/41/21/2^1/21/21/2Y��7�����+v���(tm)�Ét'���7���� ��s�c�b pHYs ���IDATx�i�Ŷ�7p�E1/2D��8<|�QAq�\�4�`��� �xh"(W1/2' �%�ÄD� qL�**AÅ�� �UP�1/4o������""kUu���?��jU���W��:���U�a%^��2���í�\���[�۹r]�y�t���Ó���* �}�z�QY�Uj #V-h���ҥ�$�@�w�5�#V]�U�[R�ڳ��n"��G@p��Knm�Q�\BκO��O�X-�!cÓ?��Jw�tp�Z�ES�0�um���b�޳���ا*� �=1/2}'Y��YA�z'�% � c @�+Ý5�ɬ�[5� ��|RKw@�wh(tm)u �Z�`#Ð-U @��(r)�1��F2��"���(r)��q1/4��&?�#Vy�JA����- G"��k2� {��WRS(�� #~8bG(c) @�"2F�x/��L�A�" m�C)(c)Gï¿½Ç ï¿½"�^"N�Q,�D?�/�7�qV�h�fPI"�h�����T V=��w�XA�?���T ��% b����G1F�p�*�R�((Ak����e�����X') �`V>����c�M(tm)2e�ڵ'�"��78;"N �_"Ç6n�x�w 4��O?�k���#�u×7~`�� �yÙ7�t�(c)��:`��Å2"��Y��5 ����Q,�"�3/4:}�� .Z��,/�7a���k�Y-%|��[*���"'�����"�n�(r)�4 ��h�"� '�>7�{ï¿½ï¿½Æ c� �<>��C[��n^0.��F�b�o�q�x�--�1/4(r)'�tÒªU"J�Ö��Z������ z��G��8â¥K-�--���lq2"����;�1/4��]w��� '���G�Az��|�-7���g��"�Y�l�1/4i�9�V��G��-��9s����vVhf��'G-��[o...�7Ï¥#V"��*a#�Y1��c�-�KG��#V"�u����U��Z[;GL�_�~�~��n�H�*m0�}Ë£>��^{���;�1/4�J����50{�l�� @��Z�CZg5�p(c)��;...�j��(c)�"p�D��"`j�é§RA,�' S"#�B-40�C=�"w� P(c)�{{t�@��{�1/2@�&:���4������I"&1/2���"�F*X<���W_�2�y�(��8k<3/4 >9r�Q��Lyc'm)�o�3/4K-,18��Cu�P��k���6o�1/45kÖ;Ö��-Ú�...-淴�D<W�k��M"�m��6s�� ��(/M vrp���Û�R i��t�ZKF� ��,

  2. Networks - Konigsberg Bridge Problem.

    For the first part, the table was the most beneficial but the networks provided the information, which was later added to my table. I didn't know the rule at first so to check if the network is traversable, I drew the whole network in one movement, without lifting the writing utensil and also without going over the same part twice.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work