• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
14. 14
14
15. 15
15

# type 1 maths portfolio trapezium rule

Extracts from this document...

Introduction

There are different ways through which can estimating the area under a curve of a certain function and one of the many methods is by the trapezium rule.

The area of a trapezium (trapezoid) is determined by;

Or in words, the average of twosides times the base, which could also be expressed as  where by if considering trapeziums formed under a curve; parallel intervals form the sides and  the base, which also doubles as the height.

To determine the area under the function, with in the interval of,, one can estimate the area by trapeziums over subintervals by finding the .

In the first attempt approximate an area the curve of the given function above, two trapeziums will be considered.

The height (h) in this case, is the difference between the X intervals

Therefore, for the two trapeziums, h = is determined by;

, Where by n is the number of trapeziums or intervals.

So, we know b is 1 and a is 0 comparing to the integrals of the function,

So now,

Giving us, as our height (h)

NB:, 0.5 is considered to be the height because the trapezoids are rotated  which makes their base the height.

To be able to calculate the area of both trapeziums, we have to consider all the lengths required hence,

We will therefore have to find the values of Y intervals, which form sides.

Middle

with corresponding ordinates.

If we consider an area of under a curve on the interval

The interval could be divided into subintervals using

And then construct trapeziums over each sub interval,

The sum of the trapezoids constructed will probably give an approximation of an area under the curve on the interval

The new base (h) will therefore be,

And the sides will be,

Having found all the sides, and which also doubles as the base or height, we can now approximate the areas of each trapezium.

Therefore area will be as follows

Therefore, total approximation area for trapeziums

Comment; having estimated the area using 2, 5 and 10 trapeziums respectively, it can be noticed that the more trapeziums one uses to draw a conclusion, the nearer or the better approximation one gets. I.e. the more trapeziums one uses to approximate an area under a curve, the nearer you come to the solution got when u use the function to determine the area.

For instance, when two trapeziums are considered, the approximation is  which makes a big difference from the area derived when using the function.

Also when 5 trapeziums are considered, the approximation is  which also gives a greater difference of 1.002

But then it can be proved that the greater number of trapeziums one considers approximating the area under a curve, the more accurate answer you arrive at.

Conclusion

and  are put in the given functions instead for  will give different results.

For the function ,

we can split the area covered under the curve formed by the function to estimate its area.

Y intervals, which form the other sides of the formed trapeziums, are crucial in estimating the trapezium areas. They form what in the formulae is

Knowing all the necessary sidesand theintervals, its then possible to estimate the area of every trapezium, the results give us, by applying the sides to the formulae of finding the area of trapeziums  where in our case we consider;

Therefore, approximation for the areas of  trapeziums gives the following results.

Therefore total approximation area will be;

This gives us the an approximation of

For the function , knowing the height which the sides will be,

The same procedure can apply to the above functions and other function as well to estimate their areas using trapezoids are the sides keep on varying depending on the structure of the curve formed, we always have to find news sides to that function but supposing the functions are in the same range.

.

The area estimated areas are as follows;

Areas

The total approximation of the areas will therefore be;

For the function

The y intervals of the new function will then be;

Having known all the required sides its then possible to estimate the areas of all the eight trapeziums formed under the curve.

Therefore the areas,

Which gives a total approximation area

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Maths essays

1. ## Shady Areas. In this investigation you will attempt to find a rule to approximate ...

= (0)2 + 3 = 3 2. h2: g(x) = x2 + 3 g(0.2) = (0.2)2 + 3 = 3.04 3. b = 0.2 4. AA = (1/2) (b) (h1 + h2) =(1/2) (0.2) (3 + 3.04) = 0.604 TRAPEZIUM C [0.4, 0.6]: 1. h3: g(x) = x2 + 3 g(0.4)

2. ## Area under curve

This gives a total area of zero. As there is the same amount shaded above the x-axis as there is below. This is equal to the actual answer of zero. However this accuracy occurs only by chance. Because the same error between the shaded area and the actual area is the same above and below the x-axis.

1. ## Math IA type 2. In this task I will be investigating Probabilities and investigating ...

This would be represented by Therefore the probability of Adam winning the deuce would be: The infinite geometric series goes on because Adam would have to win 2 points in a row and the deuce, in theory could go on forever, therefore the sum of the infinite geometric series must be found.

2. ## Math portfolio: Modeling a functional building The task is to design a roof ...

again and check whether the result is positive or negative. =(-6V)=-124.68 As the above value is negative, hence the value of "v"20.78 is for largest cuboid. Therefore width of the cuboid = 2v = 41.56 meters Using equation (6) y(36-V)=(1296-(20.78)2)=24 Hence the height = 24meters Volume=150 41.56 24=149616 m3 So

1. ## Math Portfolio: trigonometry investigation (circle trig)

the value of cosine theta equals the value of x divided by the value of r. Therefore, the square of the value of sine theta equals the square of the value of y divided by the square of the value of r and the square of the value of cosine

2. ## Math IA- Type 1 The Segments of a Polygon

The very first time when n is increased by 1, the value increases by 6. When n is again increased by 1, then the value increases by 8. A pattern that is noticed here is that for each and every n value, if it were to be squared and then

1. ## Math Portfolio Type II

Also, note that y = rn and x = un as the variable y can be replaced by rn which represents the growth factor at some year n and the variable x can be replaced by un which represents the population at some year n as inferred from the ordered pairs also.

2. ## The investigation given asks for the attempt in finding a rule which allows us ...

0.1840625 18 0.05 3.7225 3.81 0.1883125 19 0.05 3.81 3.9025 0.1928125 20 0.05 3.9025 4 0.1975625 Total Area=0.1500625+0.1503125+0.1508125+0.1515625+0.1525625+0.1538125+0.15538125+0.1570625+0.1613125+0.1638125+0.1665625+0.1695625+0.1728125+0.1763125+0.1800625+0.1840625+0.1883125+0.1928125+0.1975625 Total Area=3.3343125 ?3.334 According to the integration function of Wolfram Mathematica Online, the actual value of the area under the curve would be x2+3 which equals to12xx2+9, hence, subbing the value of x = 1, the approximated area would be 3.333, re-curring.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work