• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Type 1 Portfolio: Matrix Binomials

Extracts from this document...


Type 1 Portfolio: Matrix Binomials

Hudson Liao


I was given the expression X = image00.pngimage00.png and Y = image73.pngimage73.png, where I calculate X2,X3,X4;Y2,Y3,Y4. Below I calculated X2 and made my way up to X4, where I also did the same with Y2 to Y4.

X2= image105.pngimage105.png

X3 or X2 * X1 = image117.pngimage117.pngimage129.pngimage129.png

X4 or X3 * X1 = image01.pngimage01.pngimage15.pngimage15.png

Y2 = image27.pngimage27.png

Y3 or Y2*Y1 = image43.pngimage43.png

Y4 or Y3+ * Y1 = image61.pngimage61.png


X1 = 1X = 20X

X2 = 2X = 21X

X3 = 4X = 22X

X4 = 8X = 23X

Now I am going to find and expression for: [Xn, Yn, (X+Y)n], by inputting different ‘n’ values. By doing this I can find a correlation between each variable.

Expression: Xn = 2(n-1) X

This general statement was found by finding a relationship through values from X1 to X4. In the Xn table, a pattern begins to form from 1X, 2X, 4X and 8X. If we simplify these numbers by using a constant value such as 1X = 20X we can find a general statement for this expression.


Y1= 1Y = 20Y

Y2= 2Y = 21Y

Y3= 4Y = 22Y

Y4= 8Y = 23Y

Expression: Yn = 2(n-1) Y

The same method to determine the general statement for the expression Xn = 2(n-1) X was also used for Yn = 2(n-1) Y.






...read more.















By considering integer powers of A and B, find expression for An , Bn and (A+B)n

For the statement A= aX, I am going to determine a general formula by inputting different numbers for the constant ‘a’ and as well for the terms ‘n’.

An=(aX)n = image116.pngimage116.png

If I input a=1and n=2 into An=(aX)n, the resulting value would be 2X:




However if I continue to input a=1  and change the terms ‘n’ to 3 and 4a pattern begins to form:




By changing the terms n=2 up to n=4 ‘X’ increases each time from, 2X, 4X to 8X. The number of X’s that is being increased is resulted from this expression, “2n-1”. Therefore, we can convert the formula An=(aX)n to:



The same expression can be also used for the statement B=bY because both of the statements, A=aX and B=bY have the same pattern. The only difference between the two statements is that ‘X’ and ‘Y’ have different matrices. Therefore we just change, An  to Bn by:



If the same values that were inputted for An=aX to Bn=b

...read more.


‘n’ cannot be a negative number.

In this second example I am going let ‘n’ equal to a positive integer and the constants a and b equal zero:





The limitation for the expression  image60.pngimage60.pngis that ‘n’ cannot contain a negative exponent nor a decimal value or a fraction because if we multiply an exponent raised to a negative number it would make the value flip. However, both of the constants ‘a’ and ‘b’ can equal to any set of real numbers. Therefore the limitations and scope are:



Use an algebraic method to explain how you arrived at your general statement.

The general statement that came fromimage64.pngimage64.png  is  image65.pngimage65.png This general statement should equal to image66.pngimage66.png.

To prove that this general statement equals to image66.pngimage66.png, I am going to expand the equation image53.pngimage53.png by using only variables:












Therefore the equation image60.pngimage60.pngequals with image78.pngimage78.png

However, the equation image60.pngimage60.pngwould not work unless it is proven by the binomial theorem.







This calculations tells us that AB must equal to zero for this equation to work image87.pngimage87.png. As said before the only way the equation image53.pngimage53.png works is because image88.pngimage88.png equals to a zero matrix: image89.pngimage89.png.

In the end, the expression image53.pngimage53.png can be substituted into a different equation where (aX)n+(bY)n can be replaced as image90.pngimage90.png.



...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    x3 and x5 are intersections of one linear function and the cubic function and x1, x4 and x6 are intersections of another linear function and the cubic function. Therefore the sum of the roots of the intersection of the first linear function and the cubic function would be x2+x3+x5= And

  2. Math Portfolio Type II Gold Medal heights

    These values should not be used as definite predictions but more to give someone an idea of what the potential height could be. Year 1896 1904 1908 1912 1920 1928 1932 1936 1948 Height in cm 190 180 191 193 193 194 197 203 198 Year 1952 1956 1960 1964

  1. Math IA- Type 1 The Segments of a Polygon

    I believe so that a similar relationship would exist because of the conjectures found of the different shapes. The table below shows the conjectures that were found for the three different shapes that were investigated in this assignment above. Shape Conjectures in terms of n Triangle (n2 + n + 1)

  2. Math Portfolio: trigonometry investigation (circle trig)

    80 0.96984631 0.030154 1 90 1 3.75E-33 1 100 0.96984631 0.030154 1 120 0.75 0.25 1 140 0.413175911 0.586824 1 160 0.116977778 0.883022 1 180 1.50099E-32 1 1 200 0.116977778 0.883022 1 220 0.413175911 0.586824 1 240 0.75 0.25 1 260 0.96984631 0.030154 1 270 1 3.38E-32 1 280 0.96984631

  1. math portfolio type 1

    To find the elements inside the matrix, the scalar that is used in the trial is doubled and then added to the elements in the matrix. E.g.: when n = 4, the scalar is 8 (4x2=8) and then this amount, 8, is added to the elements inside of the matrix for n=3 (9+8=15).

  2. Math Portfolio - SL type 1 - matrix binomials

    Example, Scalar (real number) multiplication is the multiplication of the matrix using real number. In this case, a real number is multiplied by each element in the matrix one by one. Example: The multiplication of matrices is very different from the addition or the scalar multiplication of matrices.

  1. Matrix Binomials IA

    3 = So since (A + B) 3 is equal to as calculated previously, it is proven that this general expression for (A + B) n is true and consistent with all values of n. 3. Consider M = , to prove that M = A+B and M2 = A2+B2 , we must first calculate the value

  2. The purpose of this investigation is to explore the various properties and concepts of ...

    Now, a message, written in English, was created. The message chosen is ?IONCANNONREADY?, a quote from the Command and Conquer game series, the ion cannon fires charged particles and causes devastating damage to the enemy base. This message translates to the corresponding numeric code using the system above : 18,3,1 ,6,2,1,1,3,1, 9,10,2,8,23.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work